Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1483–1490 | Cite as

2-Dimensional Microlens Based on Uniformed Plasmonic Pyramid Arrays

  • Zi-Xun Jia
  • Yong Shuai
  • Jia-Hui Zhang
  • He-Ping Tan
Article
  • 91 Downloads

Abstract

As a crucial optical element, many different kinds of microlens have been proposed and studied. In this paper, a 2-dimensional microlens has been achieved based on direct bending of wavefront. With only 25 elements, the microlens can achieve subwavelength imaging in a 2-dimensional case. Focusing pattern and sensitivity of object movement have been studied. The physical picture for focusing and imaging has been explained by the help of a Gauss dipole model. Current study can broaden the basic understanding on light-matter interaction and optical element design.

Keywords

Microlens Plasmonics Metamaterial 

Notes

Acknowledgements

A very special acknowledgment is made to the editors and referees whose constructive criticism has improved this paper.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51421063, 51522601) and Chang Jiang Young Scholars Program of China (Q2016186).

References

  1. 1.
    Wang S, He J, Qu S et al (2017) Metasurface lens for both surface plasmon polaritons and transmitted wave. Plasmonics 12:621CrossRefGoogle Scholar
  2. 2.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966CrossRefGoogle Scholar
  3. 3.
    Liu XL, Zhang RZ, Zhang ZM (2014) Near-field radiative heat transfer with doped-silicon nanostructured metamaterials. Int J Heat Mass Transf 73:389–398CrossRefGoogle Scholar
  4. 4.
    Xu T, Agrawal A, Abashin M, Chau K, Jandlezec HJ (2013) All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497:470–474CrossRefGoogle Scholar
  5. 5.
    Maas R, van de Groep JPA (2016) Planar metal/dielectric single-periodic multilayer ultraviolet flat lens. Optica 3:592–596CrossRefGoogle Scholar
  6. 6.
    Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686CrossRefGoogle Scholar
  7. 7.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537CrossRefGoogle Scholar
  8. 8.
    Li JandPendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys.Rev.Lett. 101:203901CrossRefGoogle Scholar
  9. 9.
    Landy N, Smith DR (2013) A full-parameter unidirectional metamaterial cloak for microwaves. Nature Mater 12:25–28CrossRefGoogle Scholar
  10. 10.
    Driscoll T, Lipworth G, Hunt J, Landy N, Kundtz N, Basov DN, Smith DR (2012) Performance of a three dimensional transformation-optical-flattened Lüneburg lens. Opt Exp 20:13262–13273CrossRefGoogle Scholar
  11. 11.
    Lipworth G, Ensworth J, Seetharam K, Huang D, Lee JS, Schmalenberg P, Urzhumov Y (2014) Magnetic metamaterial superlens for increased range wireless power transfer. Sci Rep 4:3642CrossRefGoogle Scholar
  12. 12.
    Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Zentgraf T (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198CrossRefGoogle Scholar
  13. 13.
    Lin D, Fan P, Hasman E, Brongersma ML (2014) Dielectric gradient metasurface optical elements. Science 345:298–302CrossRefGoogle Scholar
  14. 14.
    West PR, Stewart JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, Byren R (2014) All-dielectric subwavelength metasurface focusing lens. Opt.Exp. 22:26212–26221CrossRefGoogle Scholar
  15. 15.
    Lu F, Sedgwick FG, Karagodsky V, Chase C, Chang-Hasnain CJ (2010) Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt Exp 18:12606–12614CrossRefGoogle Scholar
  16. 16.
    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z and Zheludev N I 2014 Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths Sci Reports 4Google Scholar
  17. 17.
    Cang H, Salandrino A, Wang Y and Zhang X 2015 Adiabatic far-field sub-diffraction imaging Nat.Commun. 6Google Scholar
  18. 18.
    Zentgraf T, Liu Y, Mikkelsen MH, Valentine J, Zhang X (2011) Plasmonic Luneburg and Eaton lenses. Nat nanotech 6:151–155CrossRefGoogle Scholar
  19. 19.
    Zhang S, Xiong Y, Bartal G, Yin X, Zhang X (2011) Magnetized plasma for reconfigurable subdiffraction imaging. Phys.Rev.Lett. 106:243901CrossRefGoogle Scholar
  20. 20.
    Mei S, Mehmood MQ, Hussain S, Huang K, Ling X, Siew SY, Qiu CW (2016) Flat helical nanosieves. AdFunc Mat 26:5255–5262Google Scholar
  21. 21.
    Yang X, Yao J, Rho J, Yin X, Zhang X (2012) Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photo 6:450–454CrossRefGoogle Scholar
  22. 22.
    Cai W, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV, Drachev V, PandShalaev VM (2007) Metamagnetics with rainbow colors. Opt Exp 15:3333–3341CrossRefGoogle Scholar
  23. 23.
    Zhou J, Kaplan AF, Land C, Guo LJ (2014) Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. Acs Photo 1:618–624CrossRefGoogle Scholar
  24. 24.
    Palik ED (1998) Handbook of Optical Constants of Solids. Academic Press, MassachusettsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations