, Volume 13, Issue 4, pp 1459–1465 | Cite as

Highly Stable and Sensitive Colorimetric Visualization of Trivalent Chromium Using Amido Black 10B-Stabilized Silver Nanoparticles

  • Haili YuEmail author
  • Zeru Wang
  • Wei Huang


Here, we report a highly stable and sensitive colorimetric assay for Cr3+ based on amido black 10B-stabilized silver nanoparticles (AgNPs) as the probes. The detection mechanism is that the coordination interaction between Cr3+ and amido black 10B on the surface of AgNPs causes the cross-linking/aggregation of amido black-stabilized AgNPs, generating a redshift of the absorption peak and a color change from yellow to pink. Under the optimized assay conditions, this colorimetric assay displays a good linear relationship (R 2 = 0.996) between relative absorbance ratios and the concentration of Cr3+ in the range of 0.05–20 μM, and the limit of detection (LOD) was estimated to be 0.01 μM by the UV-Vis spectra and 15 μM by the naked eye. Additionally, the colorimetric assay shows a good selectivity over other metal ions, and it is successfully applied to detection of Cr3+ in tap water, lake water, and river water samples with satisfactory recoveries.


Cr3+ Coordination Detection Silver nanoparticles Aggregation 



We gratefully acknowledge the financial support of the Longshan Scholars Programme of Southwest University of Science and Technology (Grant No. 17LZX504) and the Teaching Reform Project of Southwest University of Science and Technology (Grant No. 15xn0077).

Supplementary material

11468_2017_651_MOESM1_ESM.docx (142 kb)
ESM 1 (DOCX 141 kb)


  1. 1.
    Ye Y, Liu H, Yang L, Liu J (2012) Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nano 4(20):6442–6448Google Scholar
  2. 2.
    Liu X, Henderson J, Sasaki T, Kishi Y (2009) Dramatic improvement in catalyst loadings and molar ratios of coupling partners for Ni/Cr-mediated coupling reactions: heterobimetallic catalysts. J Am Chem Soc 131(46):16678–16680CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang M, Chen Z, Chen Q, Zou H, Lou J, He J (2008) Investigating DNA damage in tannery workers occupationally exposed to trivalent chromium using comet assay. Mutat Res Genet Toxicol Environ Mutagen 654(1):45–51CrossRefGoogle Scholar
  4. 4.
    Zhitkovich A (2005) Importance of chromium—DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol 18(1):3–11CrossRefPubMedGoogle Scholar
  5. 5.
    Zhitkovich A, Voitkun V, Kluz T, Costa M (1998) Utilization of DNA-protein cross-links as a biomarker of chromium exposure. Environ Health Persp 106(4):969–974CrossRefGoogle Scholar
  6. 6.
    Ajlec R, Čop M, Štupar J (1998) Interferences in the determination of chromium in plant materials and soil samples by flame atomic absorption spectrometry. Analyst 113(4):585–590CrossRefGoogle Scholar
  7. 7.
    Lafleur J, Salin E (2008) Speciation of chromium by high-performance thin-layer chromatography with direct determination by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 80(17):6821–6823CrossRefPubMedGoogle Scholar
  8. 8.
    Wang D, Shiraishi Y, Hirai T (2010) A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium (III). Tetrahedron Lett 51(18):2545–2549CrossRefGoogle Scholar
  9. 9.
    Kasian O, Luk’yanenko T, Velichenko A (2013) Oxidation of Cr3+-ions at the composite ТіОх/РtОу electrode. ECS Trans 45(9):13–18CrossRefGoogle Scholar
  10. 10.
    Lee K, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225CrossRefPubMedGoogle Scholar
  11. 11.
    Liu X, Xiang J, Tang Y, Zhang X, Fu Q, Zou J, Lin Y (2012) Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal Chim Acta 745:99–105CrossRefPubMedGoogle Scholar
  12. 12.
    Chen Y, Lee I, Sung Y, Wu S (2013) Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sensors Actuators B Chem 188:354–359CrossRefGoogle Scholar
  13. 13.
    Hughes S, Dasary S, Singh A, Glenn Z, Jamison H, Ray P, Yu H (2013) Sensitive and selective detection of trivalent chromium using hyper Rayleigh scattering with 5, 5′-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. Sensors Actuators B Chem 178:514–519CrossRefGoogle Scholar
  14. 14.
    Zheng W, Li H, Chen W, Ji J, Jiang X (2016) Recyclable colorimetric detection of trivalent cations in aqueous media using zwitterionic gold nanoparticles. Anal Chem 88(7):4140–4146CrossRefPubMedGoogle Scholar
  15. 15.
    Dang Y, Li H, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5, 5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Inter 1(7):1533–1538CrossRefGoogle Scholar
  16. 16.
    Jin W, Huang P, Chen Y, Wu F, Wan Y (2015) Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid. J Nanopart Res 17:1–10CrossRefGoogle Scholar
  17. 17.
    Xin J, Miao L, Chen S, Wu A (2012) Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods 4(5):1259–1264CrossRefGoogle Scholar
  18. 18.
    Li J, Han C, Wu W, Zhang S, Guo J, Zhou H (2014) Selective and cyclic detection of Cr3+ using poly (methylacrylic acid) monolayer protected gold nanoparticles. New J Chem 38(2):717–722CrossRefGoogle Scholar
  19. 19.
    Chen W, Cao F, Zheng W, Tian Y, Xian Y, Xu P, Zhang W, Wang Z, Deng K, Jiang X (2015) Detection of the nanomolar level of total Cr [(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nano 7(5):2042–2049Google Scholar
  20. 20.
    He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63(11):2930–2934CrossRefPubMedGoogle Scholar
  21. 21.
    Marín-Hernández C, Santos-Figueroa L, Moragues M, Raposo M, Batista R, Costa S, Pardo T, Martínez-Máñez R, Sancenón F (2014) Imidazoanthraquinone derivatives for the chromofluorogenic sensing of basic anions and trivalent metal cations. J Org Chem 79(22):10752–10761CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Y, Dong Y, Jiang X, Zhu N (2013) Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe. J Nanosci Nanotechnol 13:6820–6825CrossRefPubMedGoogle Scholar
  23. 23.
    Ashworth U, Chaudry M (1962) Dye-binding capacity of milk proteins for amido black 10B and Orange G. J Dairy Sci 45(8):952–957CrossRefGoogle Scholar
  24. 24.
    Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig D (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19):4855–4861CrossRefPubMedGoogle Scholar
  25. 25.
    Sharif T, Niaz A, Najeeb M, Zaman M, Ihsan M (2015) Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr 3+. Sensors Actuators B Chem 216:402–408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of National Defense Science and TechnologySouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations