, Volume 13, Issue 4, pp 1449–1457 | Cite as

A Theoretical Description for Elliptical Plasma Antenna Response in Presence of Terahertz Electromagnetic Plane Wave Based on Surface Plasmon Concept

  • Samaneh SafariEmail author
  • Bahram Jazi


Excitation of THz surface plasmons due to the scattering of transverse magnetic (TM) wave by an elliptical plasma antenna consisting of a metallic rod with dielectric coating is investigated. The incident, transmitted, and scattered electromagnetic waves are expressed in terms of Mathieu and modified Mathieu functions. The geometrical structure and its effect on the scattering cross-section and resulting resonance frequencies are studied and analyzed based on theory of Fabry-Perot resonator. It is shown that the resonance frequency can be varied by changing the geometrical structure and material used between the surfaces of this structure.


THz surface plasmon Elliptical plasma antenna Back-scattering cross-section Resonance frequency 


  1. 1.
    Suzuki T, Kimura T, Togashi T, Kitahara H, Ishihara K, Sato T (2017) Terahertz epsilon-near-zero cut-through metal-slit array antenna. Appl Phys A 123:139CrossRefGoogle Scholar
  2. 2.
    Whitman GM, Wang Q, Spector P , Schwering FK (2016) Gaussian beam scattering from a deterministic rough metal surface. IEEE Trans Antennas Propag 64:868–1876CrossRefGoogle Scholar
  3. 3.
    Jana J, Ganguly M, Pal T (2016) Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv 6:86174–86211CrossRefGoogle Scholar
  4. 4.
    Uslenghi PLE (2016) Scattering by a metal strip located inside a corner reflector. IEEE Trans Antennas Propag 64:4958–4961CrossRefGoogle Scholar
  5. 5.
    Asghar M, Qureshi MNS, Akhtar M, Fiaz MA, Ashraf MA (2017) Scattering from anisotropic plasma-coated PEMC cylinder buried beneath a slightly rough surface, vol 64Google Scholar
  6. 6.
    Annenkov VV, Volchok EP, Timofeev IV (2016) Generation of high-power electromagnetic radiation by a beam-driven plasma antenna. Plasma Phys Controlled Fusion 58:045009CrossRefGoogle Scholar
  7. 7.
    Mei J, Xie YJ (2017) Effects of a hypersonic plasma sheath on the performances of dipole antenna and horn antenna. IEEE Trans Plasma Sci 45:364–371CrossRefGoogle Scholar
  8. 8.
    Martin EH, Goniche M, Klepper CC, Hillairet J, Isler RC, Bottereau C, Colas L, Ekedahl A, Panayotis S, Pegourie B (2015) Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy. Plasma Phys Controlled Fusion 57: 065011CrossRefGoogle Scholar
  9. 9.
    Jazi B, Shekari-Firouzjaei A, Golharani S (2013) Electromagnetic wave scattering from a thin annular magnetized relativistic rotating electron beam with dielectric rod. IEEE Trans Antennas Propag 61:3757–3764CrossRefGoogle Scholar
  10. 10.
    Jazi B, Golharani S, Rahmani Z (2015) Scattering from an eccentric system, including a dielectric rod placed in a thin annular magnetized relativistic rotating electron beam (TAMRREB). Waves Random Complex Media 25:1–13CrossRefGoogle Scholar
  11. 11.
    Jazi B, Golharani S, Heidari-Semiromi E (2014) Long plasma column with a non-coaxial dielectric rod irradiated by an electromagnetic wave. IEEE Trans Plasma Sci 42:62–72CrossRefGoogle Scholar
  12. 12.
    Li C, Shen Z (2003) Electromagnetic scattering by a conducting cylinder coated with metamaterials. Prog Electromagn Res 42:91–105CrossRefGoogle Scholar
  13. 13.
    Mushref MA (2007) Closed solution to electromagnetic scattering of a plane wave by an eccentric cylinder coated with metamaterials. Opt Commun 270:441–446CrossRefGoogle Scholar
  14. 14.
    Aouani H, Rahmani M, Navarro-Cía M, Maier SA (2014) Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9:290–294CrossRefPubMedGoogle Scholar
  15. 15.
    Haverkamp1 C, Hflich K , Jckle S, Manzoni A, Christiansen S (2017) Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits. Nat Nanotechnol 28:055303CrossRefGoogle Scholar
  16. 16.
    Jazi B, Sadeghi-Nia F, Rahmani Z (2014) The role of resonance frequency of the plasmons in electromagneticwave scattering process from a dielectric covered metallic rod placed in a plasma antenna. Plasmonics 9:1121–1132CrossRefGoogle Scholar
  17. 17.
    Jazi B, Rahmani Z, Sadeghi-Nia F, Shabani H (2015) Magnetic field effects on resonance frequency of the plasmons in electromagnetic wave scattering process from a dielectric-covered metallic rod placed in a plasma antenna. Plasmonics 10:411–418CrossRefGoogle Scholar
  18. 18.
    Leen Koh A, Fernández-Domínguez AI, McComb DW, Maier SA, Yang JKW (2011) High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 11:1323–1330CrossRefGoogle Scholar
  19. 19.
    Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY, Javier García de Abajo F (2009) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9:399–404CrossRefPubMedGoogle Scholar
  20. 20.
    Antonsen TM, Palastro J, Milchberg HM (2007) Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys Plasmas 14:033107CrossRefGoogle Scholar
  21. 21.
    Hoyer W, Knorr A, Moloney JV, Wright EM, Kira M, Koch SW (2005) Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels. Phys Rev Lett 94:115004CrossRefPubMedGoogle Scholar
  22. 22.
    Gildenburg VB, Vvedenskii NV (2007) Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys Rev Lett 98:245002CrossRefPubMedGoogle Scholar
  23. 23.
    Malishevskii AS, Silin VP, Uryupin SA, Uspenskii SG (2008) THZ Cherenkov radiation of Josephson vortex. Phys. Lett A 372:712–715CrossRefGoogle Scholar
  24. 24.
    Wu HC , Sheng ZM, Dong QL, Xu H, Zhang J (2007) Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys Rev E 75:016407CrossRefGoogle Scholar
  25. 25.
    Mittleman DM, Jacobsen RH, Nuss MC (1996) T-ray imaging. IEEE J Sel Top Quantum Electron 2:679–692CrossRefGoogle Scholar
  26. 26.
    Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1:26–33CrossRefPubMedGoogle Scholar
  27. 27.
    Wilke I, MacLeod AM, Gillespie WA, Berden G, Knippels GMH, van der Meer AFG (2002) Single-shot electron-beam bunch length measurements. Phys Rev Lett 88:124801CrossRefPubMedGoogle Scholar
  28. 28.
    Giannini V, Berrier A, Maier SA, Sánchez-Gil JA, Rivas JG (2010) Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt Express 18:2797–2807CrossRefPubMedGoogle Scholar
  29. 29.
    van der Valk NCJ, Planken PCM (2005) Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl Phys Lett 87:071106CrossRefGoogle Scholar
  30. 30.
    Han Z, Zhang Y, Bozhevolnyi SI (2015) Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Opt Lett 40:2533–2536CrossRefPubMedGoogle Scholar
  31. 31.
    Sauleau R (2005) Fabry–Perot resonators encyclopedia of RF and microwave engineeringGoogle Scholar
  32. 32.
    Renk KF (2011) Basics of laser physics. Springer, BerlinGoogle Scholar
  33. 33.
    Hussein MI (2008) Electromagnetic scattering from elliptical structure coated by a metamaterial, IEEE ICMMT, 978-1-4244-1880Google Scholar
  34. 34.
    Gutierrez-Vega JC, Rodriguez-Dagnino RM, Chavez-Cerda S (2003) Mathieu functions, a visual approach. American Association of Physics TeachersGoogle Scholar
  35. 35.
    Dartora CA, Nobrega KZ, Hernandez-Figueroa HE (2005) New analytical approximations for the Mathieu functions. Appl Math Comput 165:447–458Google Scholar
  36. 36.
    McLachlan NW (1964) Theory and application of Mathieu functions. Dover, New YorkGoogle Scholar
  37. 37.
    Krall NA, Trivelpiece AW (1973) Principles of plasma physics. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Otto A (1968) Excitation on nonradiative surface plasma waves in silver by method of frustrated total reflection. Z Phys 4:398–410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Laser and Photonics, Faculty of PhysicsUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations