Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1441–1448 | Cite as

Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

  • Malte Großmann
  • Martin Thomaschewski
  • Alwin Klick
  • Arkadiusz Jarosław Goszczak
  • Elżbieta Karolina Sobolewska
  • Till Leißner
  • Jost Adam
  • Jacek Fiutowski
  • Horst-Günter Rubahn
  • Michael Bauer
Article
  • 195 Downloads

Abstract

Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and allow identifying a crossover from single-mode to multi-mode waveguiding as a function of excitation wavelength λ and DLSSPW cross section. Experiment and simulations yield, furthermore, indications for the formation of a surface plasmon-polariton cavity mode in the close vicinity of the waveguides.

Keywords

Dielectric-loaded surface plasmon-polariton waveguides DLSPPW PMMA Photoemission electron microscopy Mode dispersion 

Notes

Acknowledgements

This work was funded by the German Research Foundation (DFG) through the Collaborative Research Center 677 “Function by Switching.”

Jacek Fiutowski, Jost Adam, and Till Leißner thank the Fabrikant Mads Clausen’s Foundation for a research grant supporting this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Charbonneau R, Berini P, Berolo E, Lisicka-Shrzek E (2000) Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt Lett 25:844–846.  https://doi.org/10.1364/OL.25.000844 CrossRefPubMedGoogle Scholar
  2. 2.
    Berini P (1999) Plasmon-polariton modes guided by a metal film of finite width. Opt Lett 24:1011–1013.  https://doi.org/10.1364/OL.24.001011 CrossRefPubMedGoogle Scholar
  3. 3.
    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503.  https://doi.org/10.1103/PhysRevB.61.10484 CrossRefGoogle Scholar
  4. 4.
    Pile DFP, Ogawa T, Gramotnev DK et al (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:1–3.  https://doi.org/10.1063/1.2149971 CrossRefGoogle Scholar
  5. 5.
    Tanaka K, Tanaka M, Katayama K (2008) Simulations of nanometric optical circuits by surface plasmon polariton gap waveguide. Math Methods Electromagn Theory, MMET, Conf Proc 1158:59–64.  https://doi.org/10.1109/MMET.2008.4580897 CrossRefGoogle Scholar
  6. 6.
    Davoyan AR, Shadrivov IV, Kivshar YS (2008) Nonlinear plasmonic slot waveguides. Opt Express 16:21209–21214.  https://doi.org/10.1364/OE.16.021209 CrossRefPubMedGoogle Scholar
  7. 7.
    Gramotnev DK, Pile DFP (2004) Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl Phys Lett 85:6323.  https://doi.org/10.1063/1.1839283 CrossRefGoogle Scholar
  8. 8.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:1–4.  https://doi.org/10.1103/PhysRevLett.95.046802 CrossRefGoogle Scholar
  9. 9.
    Krenn JR, Lamprecht B, Ditlbacher H et al (2007) Non-diffraction-limited light transport by gold nanowires. Europhys Lett 60:663–669.  https://doi.org/10.1209/epl/i2002-00360-9 CrossRefGoogle Scholar
  10. 10.
    Schider G, Krenn J, Hohenau a et al (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:1–4.  https://doi.org/10.1103/PhysRevB.68.155427 CrossRefGoogle Scholar
  11. 11.
    Krenn JR (2003) Nanoparticle waveguides: watching energy transfer. Nat Mater 2:210–211.  https://doi.org/10.1038/nmat865 CrossRefPubMedGoogle Scholar
  12. 12.
    Leißner T, Lemke C, Jauernik S et al (2013) Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Opt Express 21:8251.  https://doi.org/10.1364/OE.21.008251 CrossRefPubMedGoogle Scholar
  13. 13.
    Biagi G, Fiutowski J, Radko IP et al (2015) Compact wavelength add–drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides. Opt Lett 40:2429.  https://doi.org/10.1364/OL.40.002429 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang X-Y, Zhang T, A-M H et al (2011) Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides. J Nanosci Nanotechnol 11:10520–10524.  https://doi.org/10.1166/jnn.2011.4094 CrossRefPubMedGoogle Scholar
  15. 15.
    Krasavin AV, Zayats AV (2010) All-optical active components for dielectric-loaded plasmonic waveguides. Opt Commun 283:1581–1584.  https://doi.org/10.1016/j.optcom.2009.08.054 CrossRefGoogle Scholar
  16. 16.
    Chen JG, Zhang T, Zhu JS et al (2009) Low-loss planar optical waveguides fabricated from polycarbonate. Polym Eng Sci 49:2015–2019.  https://doi.org/10.1002/pen.21441 CrossRefGoogle Scholar
  17. 17.
    Holmgaard T, Chen Z, Bozhevolnyi SI et al (2008) Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt Express 16:13585–13592.  https://doi.org/10.1364/OE.16.013585 CrossRefPubMedGoogle Scholar
  18. 18.
    Steinberger B, Hohenau A, Ditlbacher H et al (2007) Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl Phys Lett 91:10–13.  https://doi.org/10.1063/1.2772774 CrossRefGoogle Scholar
  19. 19.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405.  https://doi.org/10.1103/PhysRevB.75.245405 CrossRefGoogle Scholar
  20. 20.
    Leißner T, Lemke C, Fiutowski J et al (2013) Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides. Phys Rev Lett 111:46802.  https://doi.org/10.1103/PhysRevLett.111.046802 CrossRefGoogle Scholar
  21. 21.
    Leißner T, Thilsing-Hansen K, Lemke C et al (2012) Surface plasmon polariton emission prompted by organic nanofibers on thin gold films. Plasmonics 7:253–260.  https://doi.org/10.1007/s11468-011-9301-9 CrossRefGoogle Scholar
  22. 22.
    Holmgaard T, Chen Z, Bozhevolnyi SI et al (2009) Dielectric-loaded plasmonic waveguide-ring resonators. Opt Express 17:2968.  https://doi.org/10.1364/OE.17.002968 CrossRefPubMedGoogle Scholar
  23. 23.
    Oulton RF, Sorger VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500.  https://doi.org/10.1038/nphoton.2008.131 CrossRefGoogle Scholar
  24. 24.
    Grandidier J, Massenot S, des Francs GC et al (2008) Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys Rev B 245419:78.  https://doi.org/10.1103/PhysRevB.78.245419 CrossRefGoogle Scholar
  25. 25.
    Swiech W, Fecher G, Ziethen C et al (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectros Relat Phenom 84:171–188.  https://doi.org/10.1016/S0368-2048(97)00022-4 CrossRefGoogle Scholar
  26. 26.
    Johnstone RW, Foulds IG, Parameswaran M (2008) Deep-UV exposure of poly(methyl methacrylate) at 254 nm using low-pressure mercury vapor lamps. J Vac Sci Technol B Microelectron Nanom Struct 26:682.  https://doi.org/10.1116/1.2890688 CrossRefGoogle Scholar
  27. 27.
    Lin BJ (1975) Deep uv lithography. J Vac Sci Technol 12:1317. doi:  https://doi.org/10.1116/1.568527
  28. 28.
    Lemke C, Leißner T, Klick A et al (2013) The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl Phys B Lasers Opt 116:585–591.  https://doi.org/10.1007/s00340-013-5737-2 CrossRefGoogle Scholar
  29. 29.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  30. 30.
    Edelstein A, Amodaj N, Hoover K, et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter 14:Unit14.20. doi:  https://doi.org/10.1002/0471142727.mb1420s92
  31. 31.
    Joens MS, Huynh C, Kasuboski JM et al (2013) Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep 3:3514.  https://doi.org/10.1038/srep03514 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kubo A, Pontius N, Petek H (2007) Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7:470–475.  https://doi.org/10.1021/nl0627846 CrossRefPubMedGoogle Scholar
  33. 33.
    Klick A, de la Cruz S, Lemke C et al (2016) Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl Phys B Lasers Opt 122:79.  https://doi.org/10.1007/s00340-016-6350-y CrossRefGoogle Scholar
  34. 34.
    Kogelnik H, Ramaswamy V (1974) Scaling rules for thin-film optical waveguides. Appl Opt 13:1857–1862.  https://doi.org/10.1364/AO.13.001857 CrossRefPubMedGoogle Scholar
  35. 35.
    Chang THP (1975) Proximity effect in electron-beam lithography. J Vac Sci Technol 12:1271–1275.  https://doi.org/10.1116/1.568515 CrossRefGoogle Scholar
  36. 36.
    Owen G, Rissman P (1983) Proximity effect correction for electron beam lithography by equalization of background dose. J Appl Phys 54:3573–3581.  https://doi.org/10.1063/1.332426 CrossRefGoogle Scholar
  37. 37.
    Owen G (1990) Methods for proximity effect correction in electron lithography. J Vac Sci Technol B Microelectron Nanom Struct 8:1889.  https://doi.org/10.1116/1.585179 CrossRefGoogle Scholar
  38. 38.
    Samardak A, Anisimova M, Samardak A, Ognev A (2015) Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method. Beilstein J Nanotechnol 6:976–986.  https://doi.org/10.3762/bjnano.6.101 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Weeber J-C, Hassan K, Saviot L et al (2012) Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Opt Express 20:27636–27649.  https://doi.org/10.1364/OE.20.027636 CrossRefPubMedGoogle Scholar
  40. 40.
    Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73.  https://doi.org/10.1109/TAU.1967.1161901 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Malte Großmann
    • 1
  • Martin Thomaschewski
    • 2
  • Alwin Klick
    • 1
  • Arkadiusz Jarosław Goszczak
    • 3
  • Elżbieta Karolina Sobolewska
    • 3
  • Till Leißner
    • 3
  • Jost Adam
    • 3
  • Jacek Fiutowski
    • 3
  • Horst-Günter Rubahn
    • 3
  • Michael Bauer
    • 1
  1. 1.Institute of Experimental and Applied PhysicsUniversity of KielKielGermany
  2. 2.Mads Clausen Institute, Centre for Nano OpticsUniversity of Southern DenmarkOdenseDenmark
  3. 3.Mads Clausen Institute, NanoSYDUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations