Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1425–1432 | Cite as

Imbert-Fedorov Effect in Kretschmann Configuration with Anisotropic Metamaterial

  • Tingting Tang
  • Lei Bi
  • Li Luo
  • Jie Li
Article
  • 118 Downloads

Abstract

We study the Imbert-Fedorov (IF) effect in Kretschmann configuration with anisotropic metamaterial to explore a flexible method to enhance and modulate IF shift. The physical mechanism for large IF shifts in an anisotropic waveguide based on spin-orbit angular momentum coupling is explained. The influences of metamaterial thickness, anisotropy, and loss on IF shift are systematically discussed. This provides a theoretical prediction of IF shift in a Kretschmann configuration which is verified by simulation results in semiconductor metamaterial waveguide. The simulation results show that both metamaterial anisotropy and loss contributes significantly to the IF shift. Thus, reducing the loss and enhancing the metamaterial anisotropy are necessary and important measures to realize enhanced IF effect in the proposed Kretschmann configuration.

Keywords

Imbert-Fedorov shift Anisotropic metamaterial Kretschmann configuration 

Notes

Acknowledgements

This work is supported by the Natural National Science Foundation of China (NSFC) (61505016, 61475031, 51522204, and 11674234); Project of Sichuan Provincial Department of Education (15ZA0183); Scientific research fund of Chengdu University of Information Technology (J201417); Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1402907); and Science and Technology Bureau of Chengdu (2015-HM01-00579-SF).

References

  1. 1.
    Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 1:333–346CrossRefGoogle Scholar
  2. 2.
    Bretenaker F, Floch AL, Dutriaux L (1992) Direct measurement of the optical Goos-Hänchen effect in lasers. Phys Rev Lett 68:931–933CrossRefGoogle Scholar
  3. 3.
    Fedorov FI (1995) To the theory of total reflection. Dokl Akad Nauk SSSR 105:465Google Scholar
  4. 4.
    Imbert C (1972) Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys Rev D 5:4CrossRefGoogle Scholar
  5. 5.
    Merano M, Hermosa N, Woerdman JP (2010) How orbital angular momentum affects beam shifts in optical reflection. Phys Rev A 83:023817CrossRefGoogle Scholar
  6. 6.
    Konstantin Y, Bliokh Y, Bliokh P (2006) Conservation of angular momentum, transverse shift and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 96:073903CrossRefGoogle Scholar
  7. 7.
    Bliokh KY, Rodríguez-Fortuño FJ, NoriF ZAV (2015) Spin-orbit interactions of light. Nat Photonics 9(12):796–808CrossRefGoogle Scholar
  8. 8.
    Zhou X, Ling X, Zhang Z, Luo H, Wen S (2014) Observation of spin Hall effect in photon tunneling via weak measurements. Sci Rep 4:7388CrossRefGoogle Scholar
  9. 9.
    Yin X, Ye Z, Rho J, Wang J, Zhang X (2013) Photonic spin Hall effect at metasurfaces. Science 339(22):1405–1407CrossRefGoogle Scholar
  10. 10.
    Huang Y, Yu W, Gao L (2014) Tunable spin-dependent splitting of light beam in a chiral metamaterial slab. J Opt 16:075103CrossRefGoogle Scholar
  11. 11.
    Goswami N, Kar A, Saha A (2014) Long range surface plasmon resonance enhanced electro-optically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism. Opt Commun 330:169–174CrossRefGoogle Scholar
  12. 12.
    Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 10:509–513CrossRefGoogle Scholar
  13. 13.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phy Rev Letts 85(18):3966–3969CrossRefGoogle Scholar
  14. 14.
    Shelby RA, Smith DR, Chultz SS (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRefGoogle Scholar
  15. 15.
    Podolskiy VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys Rev B 71:201101CrossRefGoogle Scholar
  16. 16.
    Hoffman AJ, Aishwarya S, Phillip XB, Leonid A, Scott SH, Kale JF, Cheng L, Fow-Sen C, Deborah LS, Viktor AP, Evgenii EN, Claire G (2009) Midinfrared semiconductor optical metamaterials. J App Phys 105:122411CrossRefGoogle Scholar
  17. 17.
    Zhou X, Xiao Z, Luo H, Wen S (2012) Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys Rev A 85:043809CrossRefGoogle Scholar
  18. 18.
    Aiello A, Woerdman JP (2008) Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts. Opt Lett 33:1437–1439CrossRefGoogle Scholar
  19. 19.
    Salasnich L (2012) Enhancement of four reflection shifts by a three-layer surface-plasmon resonance. Phys Rev A 86:055801CrossRefGoogle Scholar
  20. 20.
    Tang T, Li J, Luo L, Sun P, Zhang Y (2017) Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab. Opt Express 25:2347–2354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Information Materials and Device Applications Key Laboratory of Sichuan Provincial UniversitiesChengdu University of Information TechnologyChengduChina
  2. 2.National Engineering Research Center of Electromagnetic Radiation Control MaterialsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations