Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1403–1407 | Cite as

Amplifying the Interaction Between Two Identical Metallic Nanoparticles with a Large Interface Distance Based on the Strong Coupling-Like Phenomenon Involving Molecular J-aggregates

  • Gang Song
  • Xin Feng
  • Gao-Yan Duan
  • Yuan-Yuan Chen
  • Chen Wang
  • Peng-Fei Zhang
  • Li Yu
Article
  • 107 Downloads

Abstract

We introduce a new way to amplify the interaction between two identical metallic nanoparticles with a large interface distance (≥the radius of each nanoparticle). The proposed structure consists of two identical metallic nanoparticles embedded in molecular J-aggregates and the strong coupling-like phenomenon is described by the scattering spectra. Finite difference time domain (FDTD) method is employed to simulate this structure and the simulation results match the experiment well (Eizner et al., Nano Lett 15:6215–6221 2015; Lin et al., Nano Lett 15:4699–4703 2015; Zengin et al., Phys Rev Lett 114:157401 2015). Molecular J-aggregates take important roles in the strong coupling-like phenomenon and can be used to amplify the interaction between the particles. The scattering spectra of this proposed structure have two separated peaks, whose shifts are larger than those in the air with the interface distance decreasing. The coupling strength between the nanoparticles and the amplification of the interaction can be tuned by the incident polarization. This structure has potential applications in the field of quantum communications such as the quantum network, the quantum key distributions, and so on.

Keywords

Localized surface plasmons Nanoparticle dimer Strong coupling-like 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0301304) and the National Natural Science Foundations of China (Nos. 11604020).

References

  1. 1.
    Tiecke TG, Thompson JD, de Leon NP, Liu LR, Vuletić V, Lukin MD (2014) Nanophotonic quantum phase switch with a single atom. Nature (London) 508:241CrossRefGoogle Scholar
  2. 2.
    McKeever J, Boca A, Boozer AD, Buck JR, Kimble HJ (2003) Experimental realization of a one-atom laser in the regime of strong coupling. Nature (London) 425:268CrossRefGoogle Scholar
  3. 3.
    Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ, Hu EL, Imamoglu A (2012) Ultrafast all-optical switching by single photons. Nat Photonics 6:605CrossRefGoogle Scholar
  4. 4.
    Imamoglu A, Awschalom DD, Burkard G, DiVincenzo DP, Loss D, Sherwin M, Small A (1999) Quantum information processing using quantum dot spins and cavity QED. Phys Rev Lett 83 :4204CrossRefGoogle Scholar
  5. 5.
    Khitrova G, Gibbs M, Kira M, Koch SW, Scherer A (2006) Vacuum Rabi splitting in semiconductors. Nat Phys 2:81CrossRefGoogle Scholar
  6. 6.
    Chang DE, Vuletic V, Lukin MD (2014) Quantum nonlinear optics [mdash] photon by photon. Nat Photonics 8:685CrossRefGoogle Scholar
  7. 7.
    Pockrand I, Brillante A, Möbius D (1982) Exciton-surface plasmon coupling: an experimental investigation. J Chem Phys 77:6289CrossRefGoogle Scholar
  8. 8.
    Bellessa J, Bonnand C, Plenet JC, Mugnier J (2004) Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett 93:036404CrossRefPubMedGoogle Scholar
  9. 9.
    Ouyang QL, Zeng SW, Jiang L, Hong LY, Xu GX, Dinh XQ, Qian J, He SL, Qu JL, Coquet P, Yong KT (2016) Ensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eizner E, Avayu O, Ditcovski R, Ellenbogen T (2015) Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano Lett 15:6215–6221CrossRefPubMedGoogle Scholar
  11. 11.
    Trügler A, Hohenester U (2008) Strong coupling between a metallic nanoparticle and a single molecule. Phys Rev B 77:115403CrossRefGoogle Scholar
  12. 12.
    Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T (2015) Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett 114:157401CrossRefPubMedGoogle Scholar
  13. 13.
    Lin QY, Li Z, Brown KA, ÓBrien MN, Ross MB, Zhou Y, Butun S, Chen PC, Schatz GC, Dravid VP, Aydin K, Mirkin CA (2015) Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett 15:4699–4703CrossRefPubMedGoogle Scholar
  14. 14.
    Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett 13:3281–3286CrossRefPubMedGoogle Scholar
  15. 15.
    Zengin G, Johansson G, Johansson P, Antosiewicz TJ, Käll M, Shegai T (2013) Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci Rep 3:3074CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Song G, Yu L, Duan GY, Wang LL (2017) Strong coupling in the structure of single metallic nanoparticle partially buried in molecular J-aggregates. Plasmonics doi: 10.1007/s11468-017-0567-4
  17. 17.
    Vasa P, Pomraenke R, Cirmi G, De Re E, Wang W, Schwieger S, Leipold D, Runge E, Cerullo G, Lienau C (2010) Ultrafast manipulation of strong coupling in metal- molecular aggregate hybrid nanostructures. ACS Nano 4:7559–7565CrossRefPubMedGoogle Scholar
  18. 18.
    Symonds C, Bonnand C, Plenet JC, Bréhier A, Parashkov R, Lauret JS, Deleporte E, Bellessa J (2008) Particularities of surface plasmon-exciton strong coupling with large Rabi splitting. New J Phys 10:065017CrossRefGoogle Scholar
  19. 19.
    Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 71:035424CrossRefGoogle Scholar
  20. 20.
    Romero I, Aizpurua J, Bryant GW, Garca de Abajo FJ (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 14:9988–9999CrossRefPubMedGoogle Scholar
  21. 21.
    Slablab A, Xuan LL, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch JF (2012) Secondharmonic generation from coupled plasmon modes in a single dimer of gold nanospheres. Opt Express 20:220–227CrossRefPubMedGoogle Scholar
  22. 22.
    Lodewijks K, Ryken J, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2013) Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics 8:1379CrossRefGoogle Scholar
  23. 23.
    Bharadwaj R, Mukherji S, Mukherji S (2016) Probing the localized surface plasmon field of a gold nanoparticle-based fibre optic biosensor. Plasmonics 11:753CrossRefGoogle Scholar
  24. 24.
    Song G, Zhang W (2016) Electromagnetic field propagation in the one-dimensional silver nanoparticle dimer chains: hotspots and energy transport. Plasmonics doi: 10.1007/s11468-016-0247-9
  25. 25.
    Song G, Dai J, Cui L, Wu C, Xiao J (2013) Multipath switch based on the optical bistability with surface plasmon. Plasmonics 8:1529CrossRefGoogle Scholar
  26. 26.
    Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers. Nano Lett 13:3281–3286CrossRefPubMedGoogle Scholar
  27. 27.
    Palik E (1985) Handbook of optical constant of solids. Academic, San DiegoGoogle Scholar
  28. 28.
    Evlyukhin AB, Reinhardt C, Zywietz U, Chichkov BN (2012) Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys Rev B 85:245411CrossRefGoogle Scholar
  29. 29.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  30. 30.
    Burrows CP, Barnes WL (2010) Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays. Opt Express 18:3187CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gang Song
    • 1
  • Xin Feng
    • 2
  • Gao-Yan Duan
    • 1
  • Yuan-Yuan Chen
    • 3
  • Chen Wang
    • 4
  • Peng-Fei Zhang
    • 1
  • Li Yu
    • 1
  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Management Science and EngineeringHebei GEO UniversityShijiazhuangChina
  3. 3.China South Idustries Research AcademyBeijingChina
  4. 4.Space Star Technology CO., LTD.BeijingChina

Personalised recommendations