, Volume 13, Issue 4, pp 1359–1366 | Cite as

Influence of Fabrication Methods of Gold and Silver Layers on Surface Plasmon Polaritons Propagation Length

  • Parva ChhantyalEmail author
  • Tobias Birr
  • Dominik Hinrichs
  • Urs Zywietz
  • Dirk Dorfs
  • Birgit Glasmacher
  • Andrey B. Evlyukhin
  • Carsten Reinhardt


We present an experimental study of surface plasmon polaritons (SPPs) propagation length (LSPP) on polycrystalline metal (gold and silver) films, fabricated by evaporation and sputtering techniques on glass substrates. For the excitation of SPPs, polymer grids on the sample surface are used. The SPPs are excited by a He-Ne (633 nm) and the LSPP are measured by grating-coupling method and the leakage radiation microscopy. Dependence of LSPP on the film thickness is also investigated. The longer LSPP is observed with evaporation technique in comparison to the sputtering technique for the silver films. On the other hand, sputtering technique provides longer LSPP for the gold films. Additionally, atomically flat crystalline gold flakes are also considered for the SPPs evaluation. The LSPP estimation on these flakes is carried out for light wavelength of 633 and 800 nm.


Surface plasmons polaritons Propagation length Grating-coupling Leakage radiation microscopy 



The authors acknowledge Dr. Heindenblut from Produktionstechnisches Zentrum Hannover for FIB milling, Dr. Dominic Tetzlaff from MBE, Leibniz University Hannover for XRD. The authors further acknowledge financial support of this work from Hannover School for Nanotechnology (HSN), the Deutsche Forschungsgemeinschaft (DFG, SPP1391: “Ultrafast Nanooptics” and SFB/TRR123: “Planar Optronic Systems”), the Russian Fund for Basic Research within the project 16-52-00112.


  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business MediaGoogle Scholar
  2. 2.
    Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23(25):31755–31765CrossRefPubMedGoogle Scholar
  3. 3.
    Evlyukhin AB, Bozhevolnyi SI (2005) Surface plasmon polariton scattering by small ellipsoid particles. Surf Sci 590(2):173–180CrossRefGoogle Scholar
  4. 4.
    Evlyukhin A, Bozhevolnyi S (2006) Surface plasmon polariton guiding by chains of nanoparticles. Laser Phys Lett 3(8):396CrossRefGoogle Scholar
  5. 5.
    Radko IP, Bozhevolnyi SI, Evlyukhin AB, Boltasseva A (2007) Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 15(11):6576–6582CrossRefPubMedGoogle Scholar
  6. 6.
    Haynes CL, McFarland AD, Duyne RPV (2005) Surface-enhanced raman spectroscopy. Anal Chem 77(17):338–ACrossRefGoogle Scholar
  7. 7.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  8. 8.
    Lemke C, Schneider C, Leißner T, Bayer D, Radke JW, Fischer A, Melchior P, Evlyukhin AB, Chichkov BN, Reinhardt C et al (2013) Spatiotemporal characterization of spp pulse propagation in two-dimensional plasmonic focusing devices. Nano Lett 13(3):1053–1058CrossRefPubMedGoogle Scholar
  9. 9.
    Reinhardt C, Evlyukhin AB, Cheng W, Birr T, Markov A, Ung B, Skorobogatiy M, Chichkov BN (2013) Bandgap-confined large-mode waveguides for surface plasmon-polaritons. JOSA B 30(11):2898–2905CrossRefGoogle Scholar
  10. 10.
    Reinhardt C, Kiyan R, Passinger S, Stepanov A, Ostendorf A, Chichkov B (2007) Rapid laser prototyping of plasmonic components. Appl Phys A 89(2):321–325CrossRefGoogle Scholar
  11. 11.
    Reinhardt C, Seidel A, Evlyukhin AB, Cheng W, Chichkov BN (2009) Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides. JOSA B 26(12):B55–B60CrossRefGoogle Scholar
  12. 12.
    Reinhardt C, Seidel A, Evlyukhin A, Cheng W, Kiyan R, Chichkov B (2010) Direct laser-writing of dielectric-loaded surface plasmon–polariton waveguides for the visible and near infrared. Appl Phys A 100(2):347–352CrossRefGoogle Scholar
  13. 13.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61(5):44CrossRefGoogle Scholar
  14. 14.
    Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294CrossRefGoogle Scholar
  15. 15.
    Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3(7):388–394CrossRefGoogle Scholar
  16. 16.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefPubMedGoogle Scholar
  17. 17.
    Wrobel P, Stefaniuk T, Trzcinski M, Wronkowska AA, Wronkowski A, Szoplik T (2015) Ge wetting layer increases ohmic plasmon losses in ag film due to segregation. ACS Appl Mater Interfaces 7(17):8999–9005CrossRefPubMedGoogle Scholar
  18. 18.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294CrossRefPubMedGoogle Scholar
  19. 19.
    Kolomenski A, Kolomenskii A, Noel J, Peng S, Schuessler H (2009) Propagation length of surface plasmons in a metal film with roughness. Appl Opt 48(30):5683–5691CrossRefPubMedGoogle Scholar
  20. 20.
    Evlyukhin A, Bozhevolnyi S, Stepanov A, Kiyan R, Reinhardt C, Passinger S, Chichkov B (2007) Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt Express 15 (25):16667–16680CrossRefPubMedGoogle Scholar
  21. 21.
    Kern W (2012) Thin film processes II, vol 2, Academic, New YorkGoogle Scholar
  22. 22.
    Tai K, Turner P, Bacon D (1969) The structure of evaporated-and dc-sputtered films of gold and silver deposited on glass. J Vac Sci Technol 6(4):687–689CrossRefGoogle Scholar
  23. 23.
    Kuttge M, Vesseur E, Verhoeven J, Lezec H, Atwater H, Polman A (2008) Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy. Appl Phys Lett 93 (11):113110CrossRefGoogle Scholar
  24. 24.
    Gupta T (2010) Copper interconnect technology. Springer Science & Business MediaGoogle Scholar
  25. 25.
    Sardana N, Birr T, Schlenker S, Reinhardt C, Schilling J (2014) Surface plasmons on ordered and bi-continuous spongy nanoporous gold. New J Phys 16(6):063053CrossRefGoogle Scholar
  26. 26.
    Parsons R (1991) Sputter deposition processes. Thin film processes II, pp 177–208Google Scholar
  27. 27.
    Thornton JA (1986) The microstructure of sputter-deposited coatings. J Vac Sci Technol A 4(6):3059–3065CrossRefGoogle Scholar
  28. 28.
    Švorvcík V, Slepička P, Švorčíková J, Špírková M, Zehentner J, Hnatowicz V (2006) Characterization of evaporated and sputtered thin au layers on poly (ethylene terephtalate). J Appl Polym Sci 99 (4):1698–1704CrossRefGoogle Scholar
  29. 29.
    Trivedi N, Ashcroft N (1988) Quantum size effects in transport properties of metallic films. Phys Rev B 38(17):12298CrossRefGoogle Scholar
  30. 30.
    Matula RA (1979) Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data 8(4):1147–1298CrossRefGoogle Scholar
  31. 31.
    Zheludkevich M, Gusakov A, Voropaev A, Vecher A, Kozyrski E, Raspopov S (2004) Oxidation of silver by atomic oxygen. Oxid Met 61(1–2):39–48CrossRefGoogle Scholar
  32. 32.
    Ivanova OS, Zamborini FP (2009) Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc 132(1):70–72CrossRefGoogle Scholar
  33. 33.
    Mashaiekhy J, Shafieizadeh Z, Nahidi H (2012) Effect of substrate temperature and film thickness on the characteristics of silver thin films deposited by dc magnetron sputtering. Eur Phys J Appl Phys 60(2):20301CrossRefGoogle Scholar
  34. 34.
    Orders P, Usher B (1987) Determination of critical layer thickness in inxga1- xas/gaas heterostructures by x-ray diffraction. Appl Phys Lett 50(15):980–982CrossRefGoogle Scholar
  35. 35.
    Birr T, Zywietz U, Fischer T, Chhantyal P, Evlyukhin AB, Chichkov BN, Reinhardt C (2016) Ultrafast surface plasmon-polariton interference and switching in multiple crossing dielectric waveguides. Appl Phys B 122(6):1–9CrossRefGoogle Scholar
  36. 36.
    Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M et al (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. Acs Nano 2(11):2257–2262CrossRefPubMedGoogle Scholar
  37. 37.
    Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30(12):1524–1526CrossRefPubMedGoogle Scholar
  38. 38.
    Wahl P (1979) Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem 10(1):91–104CrossRefPubMedGoogle Scholar
  39. 39.
    Libardi H, Grieneisen H (1998) Guided-mode resonance absorption in partly oxidized thin silver films. Thin Solid Films 333(1):82–87CrossRefGoogle Scholar
  40. 40.
    Schmidt A, Offermann J, Anton R (1996) The role of neutral oxygen radicals in the oxidation of ag films. Thin Solid Films 281:105–107CrossRefGoogle Scholar
  41. 41.
    Zhang W, Brongersma S, Richard O, Brijs B, Palmans R, Froyen L, Maex K (2004) Influence of the electron mean free path on the resistivity of thin metal films. Microelectron Eng 76(1):146–152CrossRefGoogle Scholar
  42. 42.
    Wei Q, Li K-D, Lian J, Wang L (2008) Angular dependence of sputtering yield of amorphous and polycrystalline materials. J Phys D Appl Phys 41(17):172002CrossRefGoogle Scholar
  43. 43.
    Foley JJ IV, Harutyunyan H, Rosenmann D, Divan R, Wiederrecht GP, Gray SK (2015) When are surface plasmon polaritons excited in the kretschmann-raether configuration? Sci Rep 5Google Scholar
  44. 44.
    Palik ED (1998) Handbook of optical constants of solids, vol 3, Academic, New YorkGoogle Scholar
  45. 45.
    Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Raschke MB (2012) Optical dielectric function of gold. Phys Rev B 86(23):235147CrossRefGoogle Scholar
  46. 46.
    Wu X, Kullock R, Krauss E, Hecht B (2015) Single-crystalline gold microplates grown on substrates by solution-phase synthesis. Cryst Res Technol 50(8):595–602CrossRefGoogle Scholar
  47. 47.
    Kuttge M, de Abajo FJG, Polman A (2009) How grooves reflect and confine surface plasmon polaritons? Opt Express 17(12):10385–10392CrossRefPubMedGoogle Scholar
  48. 48.
    Xu Z, Li T, Zhang D-H, Yan C, Li D, Tobing LY, Qin F, Wang Y, Shen X, Yu T (2014) Groove-structured metasurfaces for modulation of surface plasmon propagation. Appl Phys Express 7(5):052001CrossRefGoogle Scholar
  49. 49.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802CrossRefPubMedGoogle Scholar
  50. 50.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laser Zentrum Hannover e.V.HanoverGermany
  2. 2.Institute of Physical Chemistry and ElectrochemistryLeibniz University HannoverHanoverGermany
  3. 3.Laboratory for Nano and Quantum EngineeringHanoverGermany
  4. 4.Institute of Multiphase ProcessesLeibniz University HannoverHannoverGermany
  5. 5.ITMO UniversitySt. PetersburgRussia
  6. 6.University of Applied SciencesBremenGermany

Personalised recommendations