, Volume 13, Issue 4, pp 1343–1358 | Cite as

Principle and Application of Tip-enhanced Raman Scattering

  • Changzhong Gao
  • Weihua Lin
  • Jiangcai Wang
  • Rongming Wang
  • Jingang Wang


Tip-enhanced Raman scattering (TERS), as a combination of scanning probe microscopy (SPM) and surface-enhanced Raman spectroscopy (SERS) makes a huge progress in high sensitive optical and spectral analysis field by plasmon and plasmonic gradient enhancement. We introduce the mechanisms and setup of TERS with several experimental cases. Among them, high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) is introduced in detail by describing the plasmon-driven reactions.


Plasmon Tip-enhanced Raman spectroscopy 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374353 and 91436102), Municipal Science and Technology Project (No. Z17111000220000), and National Basic Research Program of China (Grant No. 2016YFA02008000).


  1. 1.
    Shiohara A, Wang Y, Liz-Marzán LM (2014) Recent approaches toward creation of hot spots for SERS detection. J Photochem Photobiol C: Photochem Rev 21:2–25Google Scholar
  2. 2.
    Yang X, Yu H, Guo X, Ding Q, Pullerits T, Wang R, Zhang G, Liang W, Sun M (2017) Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater Today Energy 5:72–78Google Scholar
  3. 3.
    Ding Q, Chen M, Fang Y, Zhang Z, Sun M (2017) Plasmon-driven Diazo coupling reactions of p-Nitroaniline via −NH2 or −NO2 in atmosphere environment. J Phys Chem C 121(9):5225–5231Google Scholar
  4. 4.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217Google Scholar
  5. 5.
    Wessel J (1985) Surface-enhanced optical microscop. J Opt Soc Am B 2:1538–1541Google Scholar
  6. 6.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333–336Google Scholar
  7. 7.
    Pettinger B, Picardi G, Schuster R, Ertl G (2000) Surface enhanced Raman spectroscopy: towards single Moleculer spectroscopy (E). Electrochemistry-TOKYO 68(12):942–949Google Scholar
  8. 8.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136Google Scholar
  9. 9.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826Google Scholar
  10. 10.
    Metiu H, Dos P (1984) Rev Phys Chem 35:507–536Google Scholar
  11. 11.
    Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360Google Scholar
  12. 12.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4:1143–1212Google Scholar
  13. 13.
    Xia L, Chen M, Zhao X, Zhang Z, Xia J, Xu H, Sun M (2014) Visualized method of chemical enhancement mechanism on SERS and TERS. J Raman Spectrosc 45(7):533–540Google Scholar
  14. 14.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670Google Scholar
  15. 15.
    Wang D, Zhu W, Best MD, Camden JP, Crozier KB (2013) Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett 13(5):2194–2198Google Scholar
  16. 16.
    Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67Google Scholar
  17. 17.
    Xie C, Mu C, Cox JR, Gerton JM (2006) Tip-enhanced fluorescence microscopy of high-density samples. Appl Phys Lett 89(14):143117Google Scholar
  18. 18.
    Ma Z, Gerton JM, Wade LA, Quake SR (2006) Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys Rev Lett 97(26):260801Google Scholar
  19. 19.
    Dong ZC, Guo XL, Trifonov AS, Dorozhkin PS, Miki K, Kimura K, Yokoyama S, Mashiko S (2004) Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys Rev Lett 92(8):086801Google Scholar
  20. 20.
    Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100(23):236101Google Scholar
  21. 21.
    Sun M, Zhang Z, Zheng H, Xu H (2012) In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep 2:647Google Scholar
  22. 22.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013a) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452):82–86Google Scholar
  23. 23.
    Klingsporn JM, Jiang N, Pozzi EA, Sonntag MD, Chulhai D, Seideman T, Jensen L, Hersam MC, Van Duyne RP (2014) Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J Am Chem Soc 136(10):3881–3887Google Scholar
  24. 24.
    Fang YR, Zhang ZL, Sun MT (2016) High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev Sci Instrum 87:033104Google Scholar
  25. 25.
    Domke KF, Pettinger B (2010) Studying surface chemistry beyond the diffraction limit: 10 years of TERS. ChemPhysChem 11(7):1365–1373Google Scholar
  26. 26.
    Bailoa E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930Google Scholar
  27. 27.
    Langeluddecke L, Singh P, Deckert V (2015) Exploring the Nanoscale: fifteen years of tip-enhanced Raman spectroscopy. Appl Spectrosc 69(12):1357–1371Google Scholar
  28. 28.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(21):1102–1106Google Scholar
  29. 29.
    Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett 12(10):5061–5067Google Scholar
  30. 30.
    Zhang Z, Sheng S, Wang R, Sun M (2016) Tip-enhanced Raman spectroscopy. Anal Chem 88(19):9328–9346Google Scholar
  31. 31.
    Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37(1–3):311–317Google Scholar
  32. 32.
    Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed Engl 47(9):1658–1661. doi: 10.1002/anie.200704054 Google Scholar
  33. 33.
    Wood BR, Bailo E, Khiavi MA, Tilley L, Deed S, Deckert-Gaudig T, McNaughton D, Deckert V (2011) Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett 11(5):1868–1873Google Scholar
  34. 34.
    Pozzi EA, Sonntag MD, Jiang N, Klingsporn JM, Hersam MC, Van Duyne RP (2013) Tip-enhanced Raman imaging: an emergent tool for probing biology at the Nanoscale. ACS Nano 7:885–888Google Scholar
  35. 35.
    Treffer R, Bohme R, Deckert-Gaudig T, Lau K, Tiede S, Lin X, Deckert V (2012) Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc Trans 40(4):609–614Google Scholar
  36. 36.
    Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 66:1842–1844Google Scholar
  37. 37.
    Rensen WHJ, van Hulst NF, Kämmer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl Phys Lett 77(10):1557–1559Google Scholar
  38. 38.
    Kharintsev SS, Hoffmann GG, Dorozhkin PS, Gd W, Loos J (2007) Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging. Nanotechnology 18(31):315502Google Scholar
  39. 39.
    Rodriguez RD, Sheremet E, Muller S, Gordan OD, Villabona A, Schulze S, Hietschold M, Zahn DR (2012) Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy. Rev Sci Instrum 83(12):123708Google Scholar
  40. 40.
    Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nano 4(6):1856–1870Google Scholar
  41. 41.
    Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603(10–12):1335–1341Google Scholar
  42. 42.
    Jain P, Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang WH (2009) Tip-enhanced Raman spectroscopy – its status, challenges and future directions. Chem Phys Lett 472(1–3):1–13Google Scholar
  43. 43.
    Khiavi MA, Wood BR, Talemi PH, Downes A, Mcnaughton D, Mechler A (2012) Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J Raman Spectrosc 43(2):173–180Google Scholar
  44. 44.
    Kharintsev SS, Hoffmann GG, Fishman AI, Salakhov MK (2013a) Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy. J Phys D Appl Phys 46(14):145501Google Scholar
  45. 45.
    Zhang MQ, Wang R, Zhu ZD, Wang J, Tian Q (2013b) Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy. J Opt 15(5):055006Google Scholar
  46. 46.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Near-field Raman scattering enhanced by a metallized tip. Chem Phys Lett 335:369–374Google Scholar
  47. 47.
    Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111:1733–1738Google Scholar
  48. 48.
    Xu G, Liu Z, Xu K, Zhang Y, Zhong H, Fan Y, Huang Z (2012) Constant current etching of gold tips suitable for tip-enhanced Raman spectroscopy. Rev Sci Instrum 83(10):103708Google Scholar
  49. 49.
    Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface Plasmons onto metallic tips: a Nanoconfined light source. Nano Lett 7(9):2784–2788Google Scholar
  50. 50.
    Downes A, Salter D, Elfick A (2006) Heating effects in tip-enhanced optical microscopy. Opt Express 14:5216–5622Google Scholar
  51. 51.
    Ren B, Picardi G, Pettinger B (2004) Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instrum 75(4):837–841Google Scholar
  52. 52.
    Pienpinijtham P, Han XX, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y (2012) Micrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Phys Chem Chem Phys 14(27):9636–9641Google Scholar
  53. 53.
    Kharintsev SS, Rogov AM, Kazarian SG (2013b) Nanopatterning and tuning of optical taper antenna apex for tip-enhanced Raman scattering performance. Rev Sci Instrum 84(9):093106Google Scholar
  54. 54.
    Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett 1(24):3427–3432Google Scholar
  55. 55.
    Deckert-Gaudig T, Deckert V (2009) Ultraflat transparent gold nanoplates--ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4):432–436Google Scholar
  56. 56.
    Ossikovski R, Nguyen Q, Picardi G (2007) Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys Rev B 75(4):045412Google Scholar
  57. 57.
    Hartschuh A, Anderson N, Nobotny L (2003) Near-field Raman spectroscopy using a sharp metal tip. J Microsc 210:234–240Google Scholar
  58. 58.
    Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S (2005) Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chem Phys Lett 410(1–3):136–141Google Scholar
  59. 59.
    Yano TA, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nat Photonics 3:473–477Google Scholar
  60. 60.
    Blum C, Schmid T, Opilik L, Weidmann S, Fagerer SR, Zenobi R (2012) Understanding tip-enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study. J Raman Spectrosc 43(12):1895–1904Google Scholar
  61. 61.
    Sun M, Fang Y, Zhang Z, Xu H (2013) Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys Rev E Stat Nonlinear Soft Matter Phys 87(2):020401Google Scholar
  62. 62.
    Sun M, Zhang Z, Chen L, Sheng S, Xu H (2014) Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv Opt Mater 2(1):74–80Google Scholar
  63. 63.
    Sun M, Fang Y, Yang Z, Xu H (2009) Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering. Phys Chem Chem Phys 11(41):9412–9419Google Scholar
  64. 64.
    Zhang WH, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett 7(5):1401–1405Google Scholar
  65. 65.
    Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2004) Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew Chem Int Ed Engl 44(1):139–142Google Scholar
  66. 66.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of Thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170Google Scholar
  67. 67.
    Sun MT, Zhang SP, Fang YR, Yang ZL, Wu DY, Dong B, Xu HX (2009) Near- and deep-ultraviolet resonance Raman spectroscopy of Pyrazine-Al4 complex and Al3-Pyrazine-Al3 junction. J Phys Chem C 103:19328–19334Google Scholar
  68. 68.
    Dörfer T, Schmitt M, Popp J (2007) Deep-UV surface-enhanced Raman scattering. J Raman Spectrosc 38(11):1379–1382Google Scholar
  69. 69.
    Hecht L, Clarkson J, Smith BJE, Springett R (2006) A new single grating spectrograph for ultraviolet Raman scattering studies. J Raman Spectrosc 37(5):562–573Google Scholar
  70. 70.
    Shafaat HS, Sanchez KM, Neary TJ, Kim JE (2009) Ultraviolet resonance Raman spectroscopy of a β-sheet peptide: a model for membrane protein folding. J Raman Spectrosc 40(8):1060–1064Google Scholar
  71. 71.
    Fodor SPA, Spiro TG (1986) Ultraviolet resonance Raman spectroscopy of DNA with 200-266-nm laser excitation. J Am Chem Soc 108:3198–3205Google Scholar
  72. 72.
    Asher SA (1993) UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Anal Chem 65(4):201AGoogle Scholar
  73. 73.
    Shashilov VA, Lednev IK (2008) 2D correlation deep UV resonance Raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc 130:309–317Google Scholar
  74. 74.
    Huang C, Balakrishnan G, Spiro TG (2006) Protein secondary structure from deep-UV resonance Raman spectroscopy. J Raman Spectrosc 37(1–3):277–282Google Scholar
  75. 75.
    Konorov SO, Georg Schulze H, Addison CJ, Haynes CA, Blades MW, Turner RFB (2009) Ultraviolet resonance Raman spectroscopy of locked single-stranded oligo(dA) reveals conformational implications of the locked ribose in LNA. J Raman Spectrosc 40(9):1162–1171Google Scholar
  76. 76.
    Taguchi A, Hayazawa N, Furusawa K, Ishitobi H, Kawata S (2009) Deep-UV tip-enhanced Raman scattering. J Raman Spectrosc 40(9):1324–1330Google Scholar
  77. 77.
    Fujiwara A, Mizutani Y (2008) Photoinduced electron transfer in glucose oxidase: a picosecond time-resolved ultraviolet resonance Raman study. J Raman Spectrosc 39(11):1600–1605Google Scholar
  78. 78.
    Lin X, Ren B, Yang ZL, Liu GK, Tian ZQ (2005) Surface-enhanced Raman spectroscopy with ultraviolet excitation. J Raman Spectrosc 36(6–7):606–612Google Scholar
  79. 79.
    Ren B, Lin XF, Yang ZL, Liu GK, Aroca RF, Mao BW, Tian ZQ (2003) Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc 125:9598–9599Google Scholar
  80. 80.
    Yang Z, Li Q, Fang Y, Sun M (2011) Deep ultraviolet tip-enhanced Raman scattering. Chem Commun (Camb) 47(32):9131–9133Google Scholar
  81. 81.
    Martin OJF, Girard C (1997) Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl Phys Lett 70(6):705–707Google Scholar
  82. 82.
    Yang ZL, Li QH, Ren B, Tian ZQ (2011) Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem Commun 47:3909–3911Google Scholar
  83. 83.
    Li JF, Huang YF, Ding Y, Yang ZL, Songbo L, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Zhong QT (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395Google Scholar
  84. 84.
    Kim K, Lee I, Lee SJ (2003) Photolytic reduction of 4-nitrobenzenethiol on Au mediated via Ag nanoparticles. Chem Phys Lett 377(1–2):201–204Google Scholar
  85. 85.
    Steidtner J, Pettinger B (2007) High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. Rev Sci Instrum 78(10):103104Google Scholar
  86. 86.
    Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Correction to observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett 12(12):6506–6506Google Scholar
  87. 87.
    Lin XD, Uzayisenga V, Li JF, Fang P-P, Wu DY, Ren B, Tian ZQ (2012) Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J Raman Spectrosc 43(1):40–45Google Scholar
  88. 88.
    Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704Google Scholar
  89. 89.
    Zhang Z, Xu P, Yang X, Liang W, Sun M (2016) Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. J Photochem Photobiol C: Photochem Rev 27:100–112Google Scholar
  90. 90.
    Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786Google Scholar
  91. 91.
    Zhang Z, Deckert-Gaudig T, Singh P, Deckert V (2015) Single molecule level plasmonic catalysis - a dilution study of p-nitrothiophenol on gold dimers. Chem Commun (Camb) 51(15):3069–3072Google Scholar
  92. 92.
    Fang Y, Li Y, Xu H, Sun M (2010) Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 26(11):7737–7746Google Scholar
  93. 93.
    Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-Aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132:9244–9246Google Scholar
  94. 94.
    Dai Z, Xiao XH, Wu W, Zhang YP, Liao L, Guo SS, Ying JJ, Shan CX, Sun MT, Jiang CZ (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light: Sci Appl 4(10):e342Google Scholar
  95. 95.
    Kang L, Chu J, Zhao H, Xu P, Sun M (2015) Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J Mater Chem C 3(35):9024–9037Google Scholar
  96. 96.
    Ding Q, Shi Y, Chen M, Li H, Yang X, Qu Y, Liang W, Sun M (2016) Ultrafast dynamics of Plasmon-Exciton interaction of Ag nanowire- Graphene hybrids for surface catalytic reactions. Sci Rep 6:32724Google Scholar
  97. 97.
    Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H (2013) Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Sci Appl 2(11):e112Google Scholar
  98. 98.
    Huang Y, Fang Y, Zhang Z, Zhu L, Sun M (2014) Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light: Sci Appl 3(8):e199Google Scholar
  99. 99.
    Zhang Z, Fang Y, Wang W, Chen L, Sun M (2016) Propagating surface Plasmon Polaritons: towards applications for remote-excitation surface catalytic reactions. Adv Sci (Weinh) 3(1):1500215Google Scholar
  100. 100.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 92(22):220801Google Scholar
  101. 101.
    Dong B, Fang Y, Xia L, Xu H, Sun M (2011) Is 4-nitrobenzenethiol converted to p,p′-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J Raman Spectrosc 42(6):1205–1206Google Scholar
  102. 102.
    Merlen A, Chaigneau M, Coussan S (2015) Vibrational modes of aminothiophenol: a TERS and DFT study. Phys Chem Chem Phys 17(29):19134–19138Google Scholar
  103. 103.
    Zhang Z, Sun M, Ruan P, Zheng H, Xu H (2013c) Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5(10):4151–4155Google Scholar
  104. 104.
    Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nano 7(16):7133–7137Google Scholar
  105. 105.
    Fujimori H, Kakihana M, Ioku K, Goto S, Yoshimura M (2001) Advantage of anti-stokes Raman scattering for high-temperature measurements. Appl Phys Lett 79(7):937–939Google Scholar
  106. 106.
    Moskovits M, DiLella DP (1980) Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. J Chem Phys 73(12):6068–6075Google Scholar
  107. 107.
    Moskovits M, DiLella DP (1982) Intense quadrupole transitions in the spectra of molecules near metal surfaces. J Chem Phys 77(4):1655–1660Google Scholar
  108. 108.
    Christopher P, Xin H, Linic S (2011) Nat Chem 3:467Google Scholar
  109. 109.
    Ayars E, Hallen HD (2000) Electric field gradient effects in Raman spectroscopy. Phys Rev Lett 85(19):4180–4183Google Scholar
  110. 110.
    Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39(12):4820–4844Google Scholar
  111. 111.
    Pallaoro A, Braun GB, Reich NO, Moskovits M (2010) Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6:618Google Scholar
  112. 112.
    Sun M, Huang Y, Xia L, Chen X, Xu H (2011) The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol top, p′-dimercaptoazobenzene on Au, Ag, and Cu Colloids. J Phys Chem C 115(19):9629–9636Google Scholar
  113. 113.
    Gao S, Ueno K, Misawa H (2011) Plasmonic antenna effects on photochemical reactions. Acc Chem Res 44:251Google Scholar
  114. 114.
    Buckingham AD (1967) Adv Chem Phys 12:107Google Scholar
  115. 115.
    Fleischmann M, Hendra PJ, Quillan M (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166Google Scholar
  116. 116.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem 84(1):1–20Google Scholar
  117. 117.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250Google Scholar
  118. 118.
    Campion A, Kambhampati P (1985) Surface-enhanced Raman scattering. J Opt Soc Am B 2:1538–1541Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of PhysicsBeihang UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  3. 3.Department of PhysicsLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations