Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1325–1333 | Cite as

Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles – C 60 Film – Al Film Nanostructure

  • Oleg A. Yeshchenko
  • Viktor V. Kozachenko
  • Nataliya I. Berezovska
  • Yurii F. Liakhov
Article
  • 72 Downloads

Abstract

The plasmon-enhanced photoluminescence of fullerene C60 thin film has been studied to reveal the dependence of the magnitude of plasmonic field in coupled nanosystem monolayer of gold nanoparticles – fullerene C 60 film – aluminum film on the thickness of the fullerene spacer in the range of 10–95 nm. The non-monotonic dependence of the photoluminescence enhancement factor with minimum at the fullerene film thickness of 50 nm has been observed. Such dependence has been explained as the result of excitation of the propagating surface plasmon polaritons in aluminum film by the near field of localized surface plasmons of gold nanoparticles. The excitation of polaritons leads to additional radiative damping of plasmonic oscillations in gold nanoparticles that causes the decrease of the enhancement factor of the intensity of fullerene photoluminescence. Fifty nanometers is revealed to be the spacer thickness at which the most effective excitation of surface plasmon polaritons occurs.

Keywords

Gold nanoparticles Aluminum film Surface plasmons Coupling Photoluminescence enhancement 

Notes

Acknowledgements

This work was supported by NATO Science for Peace and Security (SPS) Program (grant NUKR.SFPP 984617) and President’s of Ukraine grant for competitive projects (grant no. F66/68–2016) of the State Fund for Fundamental Research of Ukraine.

References

  1. 1.
    Obay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189-193Google Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824-830Google Scholar
  3. 3.
    Stockman MI (2011) Nan. oplasmonics: past, present, and glimpse into future. Opt Express 19:22029-22106Google Scholar
  4. 4.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419-422Google Scholar
  5. 5.
    Yeshchenko O, Bondarchuk I, Malynych S, Galabura Y, Chumanov G, Luzinov I (2015) Surface plasmon modes of sandwich-like metal–dielectric nanostructures. Plasmonics 10:655-665Google Scholar
  6. 6.
    Kravets VV, Yeshchenko OA, Gozhenko VV, Ocola LE, Smith DA, Vedral JV, Pinchuk AO (2012) Electrodynamic coupling in regular arrays of gold nanocylinders. J Phys D 45:045102Google Scholar
  7. 7.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721-2726Google Scholar
  8. 8.
    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002Google Scholar
  9. 9.
    Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR (2012) Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492:86-89Google Scholar
  10. 10.
    Lassiter JB, McGuire F, Mock JJ, Ciracì C, Hill RT, Wiley BJ, Chilkoti A, Smith DR (2013) Plasmonic waveguide modes of film-coupled nanocubes. Nano Lett 13:5866-5872Google Scholar
  11. 11.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245-2252Google Scholar
  12. 12.
    Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072-1074Google Scholar
  13. 13.
    Sobhani A, Manjavacas A, Cao Y, McClain MJ, García de Abajo FJ, Nordlander P, Halas NJ (2015) Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett 15:6946-6951Google Scholar
  14. 14.
    Lumdee C, Yun B, Kik PG (2014) Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photon 1:1224-1230Google Scholar
  15. 15.
    Papanikolaou N (2007) Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys Rev B 75:235426Google Scholar
  16. 16.
    Nordlander P, Le F (2006) Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl Phys B Lasers Opt 84:35-41Google Scholar
  17. 17.
    Le F, Lwin NZ, Steele JM, Kall M, Halas NJ, Nordlander P (2005) Plasmons in the metallic nanoparticle−film system as a tunable impurity problem. Nano Lett 5:2009-2013Google Scholar
  18. 18.
    Nedyalkov N, Sakai T, Miyanishi T, Obara M (2007) Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl Phys Lett 90:123106Google Scholar
  19. 19.
    Leveque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971-9981Google Scholar
  20. 20.
    Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-reversed lasing and interferometric control of absorption. Science 331:889-892Google Scholar
  21. 21.
    Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface enhanced Raman scattering. Science 321:388-392Google Scholar
  22. 22.
    Le F, Brandl D, Urzhumov Y, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic NP arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707-718Google Scholar
  23. 23.
    Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-Enhanced Raman Scattering. Topics in Applied Physics, 103. Springer-Berlin, Heidelberg, pp 19-45Google Scholar
  24. 24.
    Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3:191-202Google Scholar
  25. 25.
    Muskens OL, Giannini V, Sanchez-Gil JA, Rivas JG (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871-2875Google Scholar
  26. 26.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002Google Scholar
  27. 27.
    Kühn S, Häkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402Google Scholar
  28. 28.
    Yeshchenko OA, Bondarchuk IS, Kozachenko VV, Losytskyy MY (2015) Photoluminescence of rhodamine 6G in plasmonic field of Au nanoparticles: temperature effects. J Lumin 158:294-300Google Scholar
  29. 29.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163-166Google Scholar
  30. 30.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102-1106Google Scholar
  31. 31.
    Langhammer C, Schwind M, Kasemo B, Zorić I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461-1471Google Scholar
  32. 32.
    Chan GH, Zhao J, Schatz GC, Duyne RPV (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C 112:13958-13963Google Scholar
  33. 33.
    Ekinci Y, Solak HH, Löfler JFJ (2008) Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys 104:083107Google Scholar
  34. 34.
    Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834-840Google Scholar
  35. 35.
    Gérard D, Gray SK (2015) Aluminium plasmonics. J Phys D Appl Phys 48:184001Google Scholar
  36. 36.
    Castro-Lopez M, Brinks D, Sapienza R, van Hulst NF (2011) Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas. Nano Lett 11:4674-4678Google Scholar
  37. 37.
    Chen Q, Cumming DRS (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18:14056-14062Google Scholar
  38. 38.
    Xu T, Wu Y-K, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59Google Scholar
  39. 39.
    Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y (2011) Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl Phys Lett 98:093113Google Scholar
  40. 40.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499-4504Google Scholar
  41. 41.
    Tan SJ, Zhang SJ, Zhu D, Goh XM, Wang YM, Kumar K, Qiu C-W, Yang JKW (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:40234029Google Scholar
  42. 42.
    Olson J, Manjavacas A, Liu L, Chang W-S, Foerster B, King NS, Knight MW, Nordlander P, Halas NJ, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci 111:14348-14353Google Scholar
  43. 43.
    Ross MB, Schatz GC (2015) Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. J Phys D Appl Phys 48:184004Google Scholar
  44. 44.
    Corley DA, He T, Tour JM (2010) Two-terminal molecular memories from solution-deposited C60 films in vertical silicon nanogaps. ACS Nano 4:1879-1888Google Scholar
  45. 45.
    Singh TB, Sariciftci NS (2006) Progress in plastic electronics devices. Annu Rev Mater Res 36:199-230Google Scholar
  46. 46.
    Bhushan B (ed) (2004) Springer handbook of nanotechnology. Spinger-Verlag, BerlinGoogle Scholar
  47. 47.
    Lin C-F, Zhang M, Liu S-W, Chiu T-L, Lee J-H (2011). Photoelectric conversion efficiency of metal phthalocyanine/fullerene heterojunction photovoltaic device. Int J Mol Sci 12:476-505Google Scholar
  48. 48.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841Google Scholar
  49. 49.
    Kataura H, Endo Y, Achiba Y, Kikuchi K, Hanyu T, Yamaguchi S (1997) Dielectric constants of C60 and C70 thin films. J Phys Chem Sol 58:1913-1917Google Scholar
  50. 50.
    Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209-2213Google Scholar
  51. 51.
    Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY, García de Abajo FJ (2009) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9:399-404Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Oleg A. Yeshchenko
    • 1
  • Viktor V. Kozachenko
    • 1
  • Nataliya I. Berezovska
    • 1
  • Yurii F. Liakhov
    • 1
  1. 1.Physics DepartmentTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations