, Volume 13, Issue 4, pp 1315–1323 | Cite as

Colorimetric Sensor of Cobalt Ions in Aqueous Solution Using Gold Nanoparticles Modified with Glycyrrhizic Acid

  • Changiz KaramiEmail author
  • Mohammad Ali Taher


The present work describes simple and green method for the preparation of gold nanoparticles (AuNPs) in aqueous medium under ambient condition and their use in colorimetric detection of cobalt ion. The AuNPs were prepared by an environmentally benign method using glycyrrhizic acid (GA) which is a reducing and stabilizing agent in aqueous medium. The prepared GA-AuNPs were thoroughly characterized by using UV–visible spectroscopy, TEM, TGA, DLS, and FT-IR techniques. The analytical response was linear over the range from 50 mM to 16 μM (R 2 = 0.971) with a detection limit of 0.4 nM. The proposed diethyldithiocarbamate-AgNPs-based colorimetric method is simple and highly sensitive for the detection of cobalt ions and allows for the monitoring of cobalt ions directly with naked eye in aqueous medium.


Gold nanoparticle Surface plasmon resonance Nano sensor Nanoparticles Colorimetric sensing Co2+ 



We are thankful to the Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran for the support in this work.


  1. 1.
    Rengaraj S, Moon S-H (2002) Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Res 36(7):1783–1793CrossRefPubMedGoogle Scholar
  2. 2.
    Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, Campbell S, Rousseau M-C, Boffetta P (2004) Listing occupational carcinogens. Environ Health Perspect 112(15):1447CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rafighi P, Yaftian M, Noshiranzadeh N (2010) Solvent extraction of cobalt(II) ions; cooperation of oximes and neutral donors. Sep Purif Technol 75(1):32–38CrossRefGoogle Scholar
  4. 4.
    Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater 166(2):925–930CrossRefPubMedGoogle Scholar
  5. 5.
    Ye Y, Ali A, Yin X (2002) Cobalt determination with FI-FAAS after on-line sorbent preconcentration using 1-nitroso-2-naphthol. Talanta 57(5):945–951CrossRefPubMedGoogle Scholar
  6. 6.
    Tewari PK, Singh AK (2000) Amberlite XAD-7 impregnated with Xylenol Orange: a chelating collector for preconcentration of Cd(II), Co(II), Cu(II), Ni(II), Zn(II) and Fe(III) ions prior to their determination by flame AAS. Fresenius J Anal Chem 367(6):562–567CrossRefPubMedGoogle Scholar
  7. 7.
    Linnik RP, Zaporozhets OA (2003) Solid-phase reagent for molecular spectroscopic determination of heavy metal speciation in natural water. Anal Bioanal Chem 375(8):1083–1088CrossRefPubMedGoogle Scholar
  8. 8.
    Yan B, Worsfold PJ (1990) Determination of cobalt(II), copper(II) and iron(II) by ion chromatography with chemiluminescence detection. Anal Chim Acta 236:287–292CrossRefGoogle Scholar
  9. 9.
    Fukuda M, Hayashibe Y, Sayama Y (1995) Determination of nickel, cobalt, copper, thorium and uranium in high-purity zinc metal by ICP-MS with on-line matrix separation. Anal Sci 11(1):13–16CrossRefGoogle Scholar
  10. 10.
    Hutton EA, van Elteren JT, Ogorevc B, Smyth MR (2004) Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta 63(4):849–855CrossRefPubMedGoogle Scholar
  11. 11.
    Lidén C, Skare L, Lind B, Nise G, Vahter M (2006) Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis 54(5):233–238CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar ARSS, Piana F, Mičušík M, Pionteck J, Banerjee S, Voit B (2016) Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization. Mater Chem Phys 182:237–245CrossRefGoogle Scholar
  13. 13.
    Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  14. 14.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko YK (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRefPubMedGoogle Scholar
  15. 15.
    William S, Hummers J, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  16. 16.
    Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRefPubMedGoogle Scholar
  17. 17.
    Xin J, Miao L, Chen S, Wu A (2012) Colorimetric detection of Cr 3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods 4(5):1259–1264CrossRefGoogle Scholar
  18. 18.
    Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845CrossRefPubMedGoogle Scholar
  19. 19.
    Jian-feng G, Chang-jun H, Mei Y, Dan-qun H, Jun-jie L, Huan-bao F, Hui-bo L, Ping Y (2016) Colorimetric sensing of chromium (vi) ions in aqueous solution based on the leaching of protein-stabled gold nanoparticles. Anal Methods 8(27):5526–5532CrossRefGoogle Scholar
  20. 20.
    Poornima V, Alexandar V, Iswariya S, Perumal PT, Uma TS (2016) Gold nanoparticle-based nanosystems for the colorimetric detection of Hg 2+ ion contamination in the environment. RSC Adv 6(52):46711–46722CrossRefGoogle Scholar
  21. 21.
    Shrivas K, Sahu S, Patra GK, Jaiswal NK, Shankar R (2016) Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Anal Methods 8(9):2088–2096CrossRefGoogle Scholar
  22. 22.
    Karami C, Mehr SY, Deymehkar E, Taher MA (2017) Naked eye detection of Cr3+ and Co2+ ions by gold nanoparticle modified with azomethine. Plasmonics:1–8. doi: 10.1007/s11468-017-0541-1
  23. 23.
    Maity D, Gupta R, Gunupuru R, Srivastava DN, Paul P (2014) Calix[4]arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sensors Actuators B Chem 191:757–764CrossRefGoogle Scholar
  24. 24.
    Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Analytica Chimica Acta 751:24–43CrossRefPubMedGoogle Scholar
  25. 25.
    Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7(2):26–31CrossRefGoogle Scholar
  26. 26.
    Sadtler B, Wei A (2002) Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects. Chem Commun 15:1604–1605CrossRefGoogle Scholar
  27. 27.
    Cao Q, Zhao H, He Y, Li X, Zeng L, Ding N, Wang J, Yang J, Wang G (2010) Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe. Biosens Bioelectron 25(12):2680–2685CrossRefPubMedGoogle Scholar
  28. 28.
    Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem Lett 111(34):12839–12847CrossRefGoogle Scholar
  29. 29.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  30. 30.
    Maye MM, Lim I-IS, Luo J, Rab Z, Rabinovich D, Liu T, Zhong C-J (2005) Mediator−template assembly of nanoparticles. J Am Chem Soc 127(5):1519–1529CrossRefPubMedGoogle Scholar
  31. 31.
    Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1(4):165–167CrossRefGoogle Scholar
  32. 32.
    Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gore AH, Gunjal DB, Kokate MR, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB (2012) Highly selective and sensitive recognition of cobalt(II) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis. ACS Appl Mater Interfaces 4(10):5217–5226CrossRefPubMedGoogle Scholar
  34. 34.
    Annadhasan M, Kasthuri J, Rajendiran N (2015) Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni2+ and Co2+ ions. RSC Adv 5(15):11458–11468CrossRefGoogle Scholar
  35. 35.
    Mehta VN, Mungara AK, Kailasa SK (2013) Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal Methods 5(7):1818–1822CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesShahid Bahonar University of KermanKermanIran

Personalised recommendations