Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1287–1295 | Cite as

Broadband Mid-infrared Dual-Band Double-Negative Metamaterial: Realized Using a Simple Geometry

  • Dong Wu
  • Yumin Liu
  • Lei Chen
  • Rui Ma
  • Chang Liu
  • ChunHui Xiang
  • Ruifang Li
  • Han Ye
Article

Abstract

We design and numerically demonstrate a novel metamaterial structure consisting of a dielectric layer sandwiched between two silver films and is perforated with two kinds of square-shaped holes at different angles, which is a dual-band double-negative (each band possesses simultaneously negative permittivity and permeability) metamaterial with broad NRI bands in mid-infrared region(3–30 μm). The broadband of NRI contributed to the strong magnetic resonance caused by the excitation of surface plasmon polaritons. The influence of the number of square-shaped holes on the properties of the designed structures are also investigated by analyzing and comparing the transmission, permeability, permittivity, refractive index, and figure of merit. Then, by optimizing the structural parameters, the proposed structure exhibits a negative band with a figure of merit of 3.3, which is to our knowledge larger than previously reported plasmonic metamaterial in mid-infrared region(M-IR). The value of negative refractive index(NRI) reaches −6 and the bandwidth of NRI can reach up to 4.2 THz in the low-frequency band of M-IR region, which is the widest NRI band in M-IR spectrum at present as far as we know. Moreover, the metamaterial structure is simple and easy to be manufactured with standard fabrication techniques. This work will be very meaningful in designing dual-band negative-index material with broad NRI band and low loss. Finally, the proposed metamaterial has huge potential applications in multiband or broadband devices.

Keywords

Metamaterials Negative refractive index Surface plasmons Infrared 

Notes

Acknowledgements

This work was supported by the Ministry of Science and technology of China (Grant No. 2016YFA0301300), National Natural Science Foundation of China (Grants No. 61275201 and No.61372037), and Beijing Excellent Ph.D. Thesis Guidance Foundation (Grant No.20131001301).

References

  1. 1.
    Veselago VG (1968) The electrodynamics of substance simultaneously negative values of ε and μ. Sov Phys Usp 10:509–514Google Scholar
  2. 2.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  3. 3.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRefGoogle Scholar
  4. 4.
    Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRefGoogle Scholar
  5. 5.
    Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRefGoogle Scholar
  6. 6.
    Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photo-Dermatology 5:523–530CrossRefGoogle Scholar
  7. 7.
    Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristegui C, Mondain-Monval O (2015) Soft 3D acoustic metamaterial with negative index. Nat Mater 14:384–388CrossRefGoogle Scholar
  8. 8.
    Gao L, Shigeta K, Vazquez-Guardado A, Progler CJ, Bogart GR (2014) Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 8:5535–5542CrossRefGoogle Scholar
  9. 9.
    Paul T, Menzel C, Rockstuhl C, Lederer F (2010) Advanced optical metamaterials. Adv Mater 22:2354–2357CrossRefGoogle Scholar
  10. 10.
    Liu N, Kaiser S, Giessen H (2008) Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv Mater 20:4521–4525CrossRefGoogle Scholar
  11. 11.
    Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed Eng 49:9838–9852CrossRefGoogle Scholar
  12. 12.
    Liu H, Genov DA, Wu DM, Liu YM, Steele JM, Sun C, Zhu SN, Zhang X (2006) Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Phys Rev Lett 97:243902CrossRefGoogle Scholar
  13. 13.
    Wongkasem N, Akyurtlu A, Marx KA, Dong Q, Li J, Goodhue WD (2007) Development of chiral negative refractive index metamaterials for the terahertz frequency regime. IEEE Trans Antennas Propag 55:3052–3062CrossRefGoogle Scholar
  14. 14.
    Li T, Li JQ, Wang FM, Wang QJ, Liu H, Zhu SN, Zhu YY (2007) Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures. Appl Phys Lett 90:251112CrossRefGoogle Scholar
  15. 15.
    Huang Z, Xue J, Hou Y, Chu J, Zhang DH (2006) Optical magnetic response from parallel plate metamaterials. Phys Rev B 74:193105CrossRefGoogle Scholar
  16. 16.
    Mary A, Rodrigo SG, Garcia-Vidal FJ, Martin-Moreno L (2008) Theory of negative-refractive-index response of double-fishnet structures. Phys Rev Lett 101:103902CrossRefGoogle Scholar
  17. 17.
    García-Meca C, Ortuño R, Rodríguez-Fortuño FJ, Martí J, Martínez A (2009) Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt Lett 34:1603–1605CrossRefGoogle Scholar
  18. 18.
    Chettiar UK, Kildishev AV, Yuan HK, Cai W, Xiao S, Drachev VP, Shalaev VM (2007) Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt Lett 32:1671–1673CrossRefGoogle Scholar
  19. 19.
    Kwon DH, Werner DH (2007) Near-infrared metamaterials with dual-band negative-index characteristics. Opt Express 15:1647–1652CrossRefGoogle Scholar
  20. 20.
    Sabah C, Roskos HG (2012) Dual-band polarization-independent sub-terahertz fishnet metamaterial. Curr Appl Phys 12:443–450CrossRefGoogle Scholar
  21. 21.
    Aslam MI, Durdu ÖG (2012) Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum. J Opt Soc Am B 29:2839–2847CrossRefGoogle Scholar
  22. 22.
    Bi K, Zhou J, Zhao H, Liu X, Lan C (2013) Tunable dual-band negative refractive index in ferrite-based metamaterials. Opt Express 21:10746–10752CrossRefGoogle Scholar
  23. 23.
    Jiang ZH, Yun S, Lin L, Bossard JA, Werner DH, Mayer TS (2013) Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Sci Rep 3:1571CrossRefGoogle Scholar
  24. 24.
    Giloan M, Astilean S (2013) Dual-band optical negative index metamaterial based on hexagonal arrays of triangular nanoholes in metal-dielectric films. Opt Commun 296:141–148CrossRefGoogle Scholar
  25. 25.
    Xiao S, Drachev VP, Kildishev AV, Ni X, Chettiar UK, Yuan H, Shalaev VM (2010) Loss-free and active optical negativeindex metamaterials. Nature 466:735–738CrossRefGoogle Scholar
  26. 26.
    Fang A, Koschny T, Wegener M, Soukoulis CM (2009) Selfconsistent calculation of metamaterials with gain. Phys Rev B 79:241104(R)CrossRefGoogle Scholar
  27. 27.
    Fang A, Huang Z, Koschny T, Soukoulis CM (2011) Overcoming the losses of a split ring resonator array with gain. Opt Express 19:12688–12699CrossRefGoogle Scholar
  28. 28.
    Dolling G, Wegener M, Linden S (2007) Realization of a threefunctional-layer negative-index photonic metamaterial. Opt Lett 32:551–553CrossRefGoogle Scholar
  29. 29.
    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRefGoogle Scholar
  30. 30.
    Cao T, Wei CW, Mao LB (2015) Ultrafast tunable chirped phase-change metamaterial with a low power. Opt Express 23:4092–4105CrossRefGoogle Scholar
  31. 31.
    Jiang ZH, Lin L, Bossard JA, Werner DH (2013) Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering. Opt Express 25:31492–31505CrossRefGoogle Scholar
  32. 32.
    Cheng DM, Xie JL, Zhou PH, Zhang HB, Zhang N, Deng LJ (2012) Numerical study of a new negative index material in mid-infrared spectrum. Opt Express 23:25744–25751CrossRefGoogle Scholar
  33. 33.
    Korobkin D, Neuner B, Fietz C, Jegenyes N, Ferro G, Shvets G (2010) Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium. Opt Express 22:22734–22746CrossRefGoogle Scholar
  34. 34.
    Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Ma J, Atwater HA (2009) Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium. Opt Express 20:18330–18339CrossRefGoogle Scholar
  35. 35.
    Bossard JA, Yun S, Werner DH, Mayer TS (2009) Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms. Opt Express 17:14771–14779CrossRefGoogle Scholar
  36. 36.
    Wang X, Kwon DH, Werner DH, Khoo IC, Kildishev AV, Shalaev VM (2007) Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett 14:143122CrossRefGoogle Scholar
  37. 37.
    Andryieuski A, Ha S, Sukhorukov AA, Kivshar YS, Lavrinenko AV (2012) Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys Rev B 86:035127CrossRefGoogle Scholar
  38. 38.
    Simovski CR (2009) Material parameters of metamaterials. Opt Spectrosc 107:726–753CrossRefGoogle Scholar
  39. 39.
    Costa JT, Silveirinha MG, Maslovski SI (2009) Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials. Phys Rev B 80:235124CrossRefGoogle Scholar
  40. 40.
    Kawata S, Ohtsu M, Irie M (2001) Near-field optics and surface plasmon polariton. Springer, Chap. 6Google Scholar
  41. 41.
    Chen X, Grzegorczyk TM, Wu B-I, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608CrossRefGoogle Scholar
  42. 42.
    Smith DR, Schultz S, Markoš P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104CrossRefGoogle Scholar
  43. 43.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617CrossRefGoogle Scholar
  44. 44.
    Ortuño R, García-Meca C, Rodríguez-Fortuño FJ, Martí J, Martínez A (2009) Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Phys Rev B 79:075425CrossRefGoogle Scholar
  45. 45.
    Ruppin R (2000) Surface polaritons of a left-handed medium. Phys Lett A 277:61–64CrossRefGoogle Scholar
  46. 46.
    Ruppin R (2001) Surface polaritons of a left-handed material slab. J Phys Condens Matter 13:1811–1818CrossRefGoogle Scholar
  47. 47.
    Zhang H-F, Wang Q, Shen N-H, Li R, Chen J, Ding J, Wang H-T (2005) Surface plasmon polaritons at interfaces associated with artificial composite materials. J Opt Soc Am B 22:2686–2696CrossRefGoogle Scholar
  48. 48.
    Zhang S, Fan W, Malloy KJ, Brueck SRJ, Panoiu NC, Osgood RM (2005) Near-infrared double negative metamaterials. Opt Express 13:4922–4930CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Dong Wu
    • 1
  • Yumin Liu
    • 1
  • Lei Chen
    • 1
  • Rui Ma
    • 1
  • Chang Liu
    • 1
  • ChunHui Xiang
    • 1
  • Ruifang Li
    • 1
  • Han Ye
    • 1
  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations