, Volume 13, Issue 4, pp 1271–1275 | Cite as

A Polarization Filter Based on Photonic Crystal Fiber with Symmetry Around Gold-Coated Holes

  • Xinxing FengEmail author
  • Huijing Du
  • Shuguang Li
  • Yinan Zhang
  • Qiang Liu
  • Xinyu Gao


We propose a modified design for a photonic crystal fiber (PCF) polarization filter based on surface plasmon resonance (SPR). The air holes are arrayed in diamond lattices, and the diameter of the holes around the gold-coated holes are different that can separate the refractive index of the x-polarization and y-polarization second order surface plasmon polariton (SPP) modes. The influences of structural parameters of the photonic crystal fiber (PCF) on the filter characteristics are studied using the finite element method (FEM). Great changes have taken place in the results of numerical simulation by changing the thickness of the gold film and air hole diameter. Simulation results show that the resonance wavelength is communication wavelength 1550 mm, the loss of the y-polarization mode is 43,126.7 dB/m. When the length of the fiber is 500 μm, extinction ratio is more than 20 dB at the communication wavelength, and bandwidth achieve to 190 nm. It is an important property of PCF polarization filter in production.


Photonic crystal fiber Surface plasmon resonance Polarization filter 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61475134 and 61505175).


  1. 1.
    Russell P (2003) Photonic crystal fibers. Science 299(5605):358–362CrossRefPubMedGoogle Scholar
  2. 2.
    Kuhlmey BT, Pathmanandavel K, McPhedran RC (2006) Multipole analysis of photonic crystal fibers with coated inclusions. Opt Express 14(22):10851–10864CrossRefPubMedGoogle Scholar
  3. 3.
    Koshiba M (2002) Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Trans Electron 85(4):881–888Google Scholar
  4. 4.
    Koshiba M, TsujiY (2000) Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J Lightwave Technol 18(5):737–743Google Scholar
  5. 5.
    Hansen TP, Broeng J, Libori SEB, Knudsen E (2001) Highly birefringent index-guiding photonic crystal fibers. IEEE Photon Technol Lett 13(6):588–590CrossRefGoogle Scholar
  6. 6.
    Birks T, Knight J, Russell P (1997) Endlesslysingle-modephotonic crystal fiber. OSA Opt Lett 22(13):961–963CrossRefGoogle Scholar
  7. 7.
    Liu Q, Li Q, Fan Z, Zhang W, Li H, Zi J, An GW (2015) Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber. Opt Commun 334:46–50CrossRefGoogle Scholar
  8. 8.
    Liu Q, Li SG, Chen HL, Fan Z, Li JS (2015) Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photon J 7(2):1–9Google Scholar
  9. 9.
    Hameed MFO, Obayya SSA (2011) Design of passive polarization rotator based on silica photonic crystal fiber. Opt Lett 36(16):3133–3135CrossRefPubMedGoogle Scholar
  10. 10.
    Chen MY, Zhou J, Pun EY (2009) A novel WDM component based on a three-core photonic crystal fiber. J Lightwave Technol 27(13):2343–2347CrossRefGoogle Scholar
  11. 11.
    Rosenstein B, Shirakov A, Belker D, Ishaaya AA (2014) The 0.7 MW output power from a two-arm coherently combined Qswitched photonic crystal fiber laser. Opt Express 22(6):6416–6421CrossRefPubMedGoogle Scholar
  12. 12.
    Robin C, Dajani I, Pulford B (2014) Modal instability suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt Lett 39(3):666–669CrossRefPubMedGoogle Scholar
  13. 13.
    Kuo SM, Huang YW, Yeh SM, Cheng WH, Lin CH (2011) Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement. Opt Express 19(19):18372–18379CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt MA, Russell PSJ (2008) Long-range spiralling surface plasmon modes on metallic nanowires. Opt. Express 16(18):13617–13623CrossRefPubMedGoogle Scholar
  15. 15.
    Gauvreau B, Hassani A, Fassi Fehri M, Kabashin A, Skorobogatiy MA (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11413–11426CrossRefPubMedGoogle Scholar
  16. 16.
    Lee H, Schmidt M, Tyagi H, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys B Lasers Opt 93(11):111102Google Scholar
  17. 17.
    Vial A, Grimault AS, Macias D, Barchiesi D, Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416CrossRefGoogle Scholar
  18. 18.
    Xue J, Li S, Xiao Y, Qin W, Xin X, Zhu X (2013) Polarization filter character of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonane. Opt Express 21(11):13733–13740CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xinxing Feng
    • 1
    Email author
  • Huijing Du
    • 1
  • Shuguang Li
    • 1
  • Yinan Zhang
    • 1
  • Qiang Liu
    • 1
  • Xinyu Gao
    • 1
  1. 1.Key Laboratory of Metastable Materials Science and Technology, College of ScienceYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations