Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1255–1263 | Cite as

Theoretical Study of Sensitivity and Localized Surface Plasmon Resonance of Ag-Dielectric Core-Shell Multi-layered Nanosphere

  • Ye-Wan Ma
  • Zhao-Wang Wu
  • Li-Hua Zhang
  • Jie Zhang
  • Guo-Shu Jian
Article
  • 162 Downloads

Abstract

Localized surface plasmon resonances (LSPRs) of Ag-dielectric-Ag multi-layered nanoshell are studied by quasi-static approximation and plasmon hybridization theory. Absorption properties of multi-layered nanoshell with the silver core and nanoshell separated by a dielectric layer exhibit strong coupling between the core and nanoshell. The result shows absorption spectrum of LSPRS is influenced by the refractive index of surrounding medium, the dielectric constant of middle dielectric layer, the thickness of inner core radius and outer shell layer. LSPR shift of the longest wavelength \(\left |\omega _{-}^{-}\right >\) is red-shifted with increasing the inner core radius. It is interesting to find that longer wavelength \(\left |\omega _{-}^{+}\right >\) mode is mainly effected by the ratio constant of the surrounding medium refractive index ε 4 to the middle layer dielectric constant ε 2. \(\left |\omega _{-}^{+}\right >\) mode takes place a blue-shift with increasing inner core radius when ε 2 > ε 4, a red-shift when ε 2 < ε 4, and no-shifting when ε 2 = ε 4. However, the influence of dielectric layer radius to \(\left |\omega _{-}^{+}\right >\) mode shows the different property as that of increasing the inner core radius. The underlying mechanisms are analyzed with the plasmon hybridization theory and the distribution of induced charge interaction between the inner core and outer shell. In addition, the influence of core radius, middle dielectric layer radius and outer shell radius to sensitivity of Ag-dielectric-Ag multi-layered nanoshell are also reported, a higher sensitivity could be gotten by adjusting geometrical parameters. Our theoretical study could give an easy way to analyze properties of the core-shell nanosphere based on plasmon hybridization theory and the induced charge interaction, and usefully broaden the applications in nano-optics.

Keywords

Localized surface plasmon resonance (LSPR) Ag-dielectric-Ag multi-layered nanoshell Plasmon hybridization theory Sensitivity 

Notes

Acknowledgments

This work is supported by the Key Program for Excellent Young Talents in University of Anhui Province (gxyq2017027,gxyqZD2016206), Anhui Provincial Natural Science Foundation (1708085MA10), and the key Scientific ResearchFoundation of Anhui Provincial Education Department under grant nos. (KJ2015A223, KJ2015ZD28, and AQKJ2015B017).

References

  1. 1.
    Maier S (2007) Plasmonics: fundamentals and application. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Novotny L, Hecht B (2006) Principle of nano-ptics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Weng GJ, Li JJ, Zhao JW (2012) Phys E 44:2072CrossRefGoogle Scholar
  4. 4.
    Zhu J, Zhao SM (2016) Plasmonics 117:659CrossRefGoogle Scholar
  5. 5.
    Daneshfar N (2015) J Appl Phys 117:123105CrossRefGoogle Scholar
  6. 6.
    Sharma R, Roopak S, Pathak NK, Ji A, Sharma RP (2016) Plasmonics. doi: 10.1007/s11468-016-0349-4
  7. 7.
    Sobhani A, Manjavacas A, Cao Y, Mclain MJ, Garcładeabajo FJ, Nordlander P, Halas NJ (2015) Nano Lett 15:6946CrossRefGoogle Scholar
  8. 8.
    Wu DJ, Liu XJ (2010) Appl Phys Lett 97:061904CrossRefGoogle Scholar
  9. 9.
    Liu C, Lv JW, Liu ZT, Zheng SJ, Liu Q, Sun T, Mu HW, Chu PK (2016) Plasmonics. doi: 10.1007/s11468-016-0214-5
  10. 10.
    Chaudhuri RG, Paria S (2011) Chem.Rev 112:2373CrossRefGoogle Scholar
  11. 11.
    Xia XH, Liu Y, Backman V, Ameer GA (2006) Nanotechnology 17:5435CrossRefGoogle Scholar
  12. 12.
    Khosravi H, Daneshfar N, Bahari A (2010) Phys Plasmas 17:053302CrossRefGoogle Scholar
  13. 13.
    Shirzaditabar F, Saliminasab M (2013) Phys Plsmas 20:052109CrossRefGoogle Scholar
  14. 14.
    Ho JF, Yanchuk BL, Zhang JB (2012) Appl Phys A 117:133CrossRefGoogle Scholar
  15. 15.
    Averitt RD, Westcott SL, Halas NJ (1999) J Opt Soc Am B 16:1284Google Scholar
  16. 16.
    Daneshfar N, Bazyari K (2014) Appl Phys A 116:611CrossRefGoogle Scholar
  17. 17.
    Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) J Appl Phys 739:1043CrossRefGoogle Scholar
  18. 18.
    Bohren CF, Huffman DR (2000) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  19. 19.
    Johnson PB, Christy RW (1972) Phys Rev B 12:4370CrossRefGoogle Scholar
  20. 20.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Series in Materials Science, vol 25. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Prodan E, Radbloff C, Halas NJ, Nordander P (2003) Science 302:419CrossRefGoogle Scholar
  22. 22.
    Prodan E, Nordander P (2004) J Chem Phys 120:5444CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Fei GT, Zhang LD (2011) J Appl Phys 109:054315CrossRefGoogle Scholar
  24. 24.
    Qian J, Li YD, Chen J, Xu JJ, Sun Q (2014) Phys Chem C 118:8581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ye-Wan Ma
    • 1
  • Zhao-Wang Wu
    • 1
  • Li-Hua Zhang
    • 1
  • Jie Zhang
    • 1
  • Guo-Shu Jian
    • 2
  1. 1.School of Physics and Electric EngineeringAnqing Normal UniversityAnqingPeople’s Republic of China
  2. 2.School of Physics and Optoelectronics TechnologyDalian Universtiy of TechnologyDalianPeople’s Republic of China

Personalised recommendations