, Volume 13, Issue 4, pp 1183–1190 | Cite as

Giant Infrared Sensitivity of Surface Plasmon Resonance-Based Refractive Index Sensor

  • Akhilesh Kumar MishraEmail author
  • Satyendra Kumar Mishra
  • Amar Pal Singh


Surface plasmons (SPs), the coherent charge density oscillations of the electrons bound to the metal-dielectric interface, are dominating the research field of optics. One of the ubiquitous applications of SPs is in sensing. In the present work, we have theoretically studied a couple of surface plasmon resonance (SPR)-based fiber-coupled ultra-sensitive refractive index sensors working in the infrared (IR) region. Either of the copper (Cu) and aluminum (Al) is used as surface plasmon exciting layers in these sensing probes. On the top of the metal layer, field-enhancing graphene and silicon layers are considered. The probes are characterized in terms of sensitivity and detection accuracy (DA). The sensitivities of Cu- and Al-based optimized probes are obtained respectively to be 23.50 and 24 μm/refractive index unit (RIU). To ensure the probes’ compatibility with bio-samples, an extra bio-recognition layer of graphene has been considered over the silicon layer which resulted into the respective sensitivities of 20 and 19.50 μm/RIU for Cu- and Al-based probes with appreciably good DAs.


Surface plasmon Sensitivity Sensor Graphene Silicon Fiber 



Akhilesh Kumar Mishra acknowledges the support in part at Technion by Israel Council for Higher Education.


  1. 1.
    Nicoletti O, de la Pena F, Leary RK, Holland DJ, Ducati C, Midgley PA (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84CrossRefPubMedGoogle Scholar
  2. 2.
    Gong Y, Joly AG, Hu D, El-Khoury PZ, Hess WP (2015) Ultrafast imaging of surface plasmons propagating on a gold surface. Nano Lett 15:3472–3478CrossRefPubMedGoogle Scholar
  3. 3.
    Homola J (2006) Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors. Vol. 4. Springer, BerlinGoogle Scholar
  4. 4.
    Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609CrossRefPubMedGoogle Scholar
  5. 5.
    Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science 316:430–432CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar A, Mishra AK (2012) Anomalous self-steepening, temporal pulse splitting and ring formation in a left-handed metamaterial with cubic nonlinearity. J Opt Soc Am B 29:1330–1337CrossRefGoogle Scholar
  7. 7.
    Mishra AK, Kumar A (2012) Novel high gain regimes of spatio-temporal modulational instability for a single-cycle pulse in metamaterials. J Mod Opt 59:1599–1606CrossRefGoogle Scholar
  8. 8.
    Politano A, Silkin VM, Nechaev IA, Vitiello MS, Viti L, Aliev ZS, Babanly M B, Chiarello G, Echenique P M, Chulkov EV (2015) Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3. Phys Rev Lett 115:216802CrossRefPubMedGoogle Scholar
  9. 9.
    Lereu AL (2007) Modulation: plasmons lend a helping hand. Nat Photonics 1:368–369CrossRefGoogle Scholar
  10. 10.
    Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, Zayats AV (2011) Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nanotechnol 6:107–111CrossRefPubMedGoogle Scholar
  11. 11.
    Rhodes C, Franzen S, Maria J-P, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S (2006) Surface plasmon resonance in conducting metal oxides. J Appl Phys 100:054905CrossRefGoogle Scholar
  12. 12.
    Franzen S, Rhodes C, Cerruti M, Gerber RW, Losego M, Maria J-P, Aspnes DE (2009) Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt Lett 34:2867–2869CrossRefPubMedGoogle Scholar
  13. 13.
    Mishra AK, Mishra SK, Gupta BD (2015) SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt Commun 344:86–91CrossRefGoogle Scholar
  14. 14.
    Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120:2893–2900CrossRefGoogle Scholar
  15. 15.
    Mishra AK, Mishra SK (2015) Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Europhys Lett 112:10001CrossRefGoogle Scholar
  16. 16.
    Shalabney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators A Phys 159:24–32CrossRefGoogle Scholar
  17. 17.
    Nishijima Y, Rosa L, Juodkazis S (2014) Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles. Appl Phys A 115:409–414CrossRefGoogle Scholar
  18. 18.
    Mishra AK, Mishra SK, Verma RK (2015) An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J Phys D Appl Phys 48:435502CrossRefGoogle Scholar
  19. 19.
    Mishra AK, Mishra SK, Gupta BD (2015) Gas-clad two-way fiber optic SPR sensor: a novel approach for refractive index sensing. Plasmonics 10:1071–1076CrossRefGoogle Scholar
  20. 20.
    Nishijima Y, Adachi Y, Rosa L, Juodkazis S (2013) Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array. Opt Mat Exp 3:968–976CrossRefGoogle Scholar
  21. 21.
    Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648CrossRefPubMedGoogle Scholar
  22. 22.
    Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Exp 18:14395–14400CrossRefGoogle Scholar
  23. 23.
    Mishra AK, Mishra SK (2017) MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain. J Phys Condens Matter 29:145001CrossRefPubMedGoogle Scholar
  24. 24.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901CrossRefGoogle Scholar
  25. 25.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of Graphene. Science 320:1308–1308CrossRefPubMedGoogle Scholar
  26. 26.
    Mishra AK, Mishra SK (2016) Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region. Sensors Actuators B Chem 237:969–973CrossRefGoogle Scholar
  27. 27.
    Hansen WN (1968) Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J Opt Soc Am 58:380–390CrossRefGoogle Scholar
  28. 28.
    Chilwell J, Hodgkinson I (1984) Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J Opt Soc Am A 1:742–753CrossRefGoogle Scholar
  29. 29.
    Dash JN, Jha R (2016) Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt Quant Electron 48:137CrossRefGoogle Scholar
  30. 30.
    Allsop T, Neal R, Rehman S, Webb DJ, Mapps D, Bennion I (2008) Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings. J Opt Soc Am B 25:481–490CrossRefGoogle Scholar
  31. 31.
    Verma RK, Gupta BD (2010) Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. J Opt Soc Am A 27:846–851CrossRefGoogle Scholar
  32. 32.
    Masson J-F, Kim Y-C, Obando LA, Peng W, Booksh AS (2006) Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region. Appl Spectrosc 60:1241–1246CrossRefPubMedGoogle Scholar
  33. 33.
    Ahn JH, Seong TY, Kim WM, Lee TS, Kim I, Lee K-S (2012) Fiber-optic waveguide coupled surface plasmon resonance sensor. Opt Exp 20:21729–21738CrossRefGoogle Scholar
  34. 34.
    Torres V, Beruete M, Sánchez P, Villar ID (2016) Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration. Appl Phys Lett 108:043507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Andrew and Erna Viterbi Faculty of Electrical EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Electronic Engineering DepartmentCity University of Hong KongKowloon TongHong Kong
  3. 3.Faculty of BiologyTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations