Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1171–1182 | Cite as

Modifying and Fine Controlling of Silver Nanoparticle Nucleation Sites and SERS Performance by Double Silicon Etching Process

  • Allaa A. Jabbar
  • Alwan M. Alwan
  • Adawiya J. Haider
Article

Abstract

Different forms of modified and well-controlled plasmonic silver nanoparticles (AgNPs) were synthesized by silver ion reduction process of porous silicon (PS). Fine control of PS surface morphology was accomplished by employing two etching processes: light-induced etching (LIE) and photo electrochemical etching (PECE). The idea was to prepare excellent and reproducible surface-enhanced Raman scattering (SERS) substrates with high enhancement performance. PS surface modification was employed to create efficient and nearly uniformly distributed AgNP hotspot regions with very high specific surface areas. Reproducibility deviation of no more than 5% and enhancement factor of 1.2 × 1014 were obtained by SERS measurements at very low, rhodamine 6G (R6G) dye, concentration 10−15 M. The PS morphology SERS substrate was well discussed and analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and Raman measurements.

Keywords

Porous silicon Double etching processes Hotspots Surface-enhanced Raman scattering Reproducibility Single molecule detection 

References

  1. 1.
    Zhang D, Xiao SJ, Zheng LL, Lia YF, Huang CZ (2014) Mater Chem BGoogle Scholar
  2. 2.
    Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  3. 3.
    Li Q-l, Li B-w, Wang Y-q (2013) Surface-enhanced Raman scattering microfluidic sensor. RSC Adv 3:13015–13026CrossRefGoogle Scholar
  4. 4.
    Sánchez-Iglesias A, Aldeanueva-Potel P, Ni W, Pérez-Juste J, Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Chemical seeded growth of ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5:21–27CrossRefGoogle Scholar
  5. 5.
    Santos A, Kumeria T (2015) Electrochemical etching methods for producing porous silicon. In Electrochemically engineered nanoporous materials, ed. Springer, pp. 1–36Google Scholar
  6. 6.
    Al-Khazraji KK, Rasheeda BG, Ibrahem MA, Mohammed AF (2012) Effect of laser-induced etching process on porous structures. Procedia Eng 38:1381–1390CrossRefGoogle Scholar
  7. 7.
    Soni R, Bassam G, Abbi S (2003) Laser-controlled photoluminescence characteristics of silicon nanocrystallites produced by laser-induced etching. Appl Surf Sci 214:151–160CrossRefGoogle Scholar
  8. 8.
    Yamanishi M, Suemune I (1983) Quantum mechanical size effect modulation light sources–a new field effect semiconductor laser or light emitting device. Jpn J Appl Phys 22:L22CrossRefGoogle Scholar
  9. 9.
    Kolasinski KW, Mills D, Nahidi M (2006) Laser assisted and wet chemical etching of silicon nanostructures. J Vac Sci Technol Vacuums Surf Films 24:1474CrossRefGoogle Scholar
  10. 10.
    Kowalik I, Guziewicz E, Kopalko K, Yatsunenko S, Wójcik-Głodowska A, Godlewski M et al (2009) Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors. J Cryst Growth 311:1096–1101CrossRefGoogle Scholar
  11. 11.
    Alwan AM, Hayder AJ, Jabbar AA (2015) Study on morphological and structural properties of silver plating on laser etched silicon. Surf Coat Technol 283:22–28CrossRefGoogle Scholar
  12. 12.
    Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12:859–869CrossRefGoogle Scholar
  13. 13.
    Menna P, Di Francia G, La Ferrara V (1995) Porous silicon in solar cells: a review and a description of its application as an AR coating. Sol Energy Mater Sol Cells 37:13–24CrossRefGoogle Scholar
  14. 14.
    Sun X, Wang N, Li H (2013) Deep etched porous Si decorated with au nanoparticles for surface-enhanced Raman spectroscopy (SERS). Appl Surf Sci 284:549–555CrossRefGoogle Scholar
  15. 15.
    Chan S, Kwon S, Koo TW, Lee LP, Berlin AA (2003) Surface-enhanced Raman scattering of small molecules from silver-coated silicon Nanopores. Adv Mater 15:1595–1598CrossRefGoogle Scholar
  16. 16.
    Panarin AY, Terekhov S, Kholostov K, Bondarenko V (2010) SERS-active substrates based on n-type porous silicon. Appl Surf Sci 256:6969–6976CrossRefGoogle Scholar
  17. 17.
    Adawyia JH, Alwan MA, Allaa AJ (2016) Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous Mesoporous Mater 227:152–160CrossRefGoogle Scholar
  18. 18.
    Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRefGoogle Scholar
  19. 19.
    Tsuboi T, Sakka T, Ogata YH (1998) Metal deposition into a porous silicon layer by immersion plating: influence of halogen ions. J Appl Phys 83:4501–4506CrossRefGoogle Scholar
  20. 20.
    Antunez EE et al (2014) Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF. Nanoscale Res Lett 9.1:512CrossRefGoogle Scholar
  21. 21.
    Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126CrossRefGoogle Scholar
  22. 22.
    Sze SM (2008) Semiconductor devices: physics and technology: John Wiley & SonsGoogle Scholar
  23. 23.
    Ben-Chorin M, Möller F, Koch F (1994) Nonlinear electrical transport in porous silicon. Phys Rev B 49:2981CrossRefGoogle Scholar
  24. 24.
    Peng C, Hirschman K, Fauchet P (1996) Carrier transport in porous silicon light-emitting devices. J Appl Phys 80:295–300CrossRefGoogle Scholar
  25. 25.
    Zheng H (2011) Molecular dynamic simulation of thin film growth stress evolutionGoogle Scholar
  26. 26.
    Novara C, Dalla Marta S, Virga A, Lamberti A, Angelini A, Chiadò A et al (2016) SERS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency. J Phys Chem C 120:16946–16953CrossRefGoogle Scholar
  27. 27.
    Zhang C, Jiang SZ, Yang C, Li CH, Huo YY, Liu XY et al (2016) Gold@ silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Scientific reports, vol. 6Google Scholar
  28. 28.
    Le Ru E, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803CrossRefGoogle Scholar
  29. 29.
    Bykkam S, Ahmadipour M, Narisngam S, Kalagadda VR, Chidurala SC (2015) Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv Nanopart 4:1CrossRefGoogle Scholar
  30. 30.
    Harraz FA, Ismail AA, Bouzid H, Al-Sayari S, Al-Hajry A, Al-Assiri M (2015) Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 331:241–247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Allaa A. Jabbar
    • 1
  • Alwan M. Alwan
    • 1
  • Adawiya J. Haider
    • 1
  1. 1.Department of Applied SciencesUniversity of TechnologyBaghdadIraq

Personalised recommendations