Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1143–1151 | Cite as

Surface-Enhanced Raman Scattering in Tunable Bimetallic Core-Shell

Article
  • 111 Downloads

Abstract

In this paper, optical properties of multilayer spherical core-shell nanoparticles based on quasi-static approach and plasmon hybridization theory are investigated. Calculations show that light absorption spectrum of bimetallic multilayer core-shell has three intense plasmon resonance peaks, which are more suitable for multiplex biosensing based on surface-enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR). The plasmon resonance peaks in bimetal nanshells are optimized by tuning the geometrical parameters. In addition, the optimal geometry is discussed to obtain the Raman enhancement factor in bimetallic multilayer nanoshell. SERS enhancement factor is calculated with consideration of dampings due to both the electron scattering and the radiation at the boundary and modified Drude model in dielectric function of bimetallic nanoshell. It is shown that bimetallic nanoshell with the small size exhibits strong SERS enhancement factor (~6.63 × 105) with additional collision dampings and ~2.9 × 109 with modified Drude model which are suitable for biosensing applications. In addition, any variation in blood concentration and oxygen level can be detected by this bimetallic core-shell nanoparticle with sensitivity of Δλn = 264.91 nm/RIU.

Keywords

Local electric field enhancement Nanoshell Raman scattering Surface plasmon 

References

  1. 1.
    Raether H (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  2. 2.
    Zhang YJ, Gao WT, Yang S, Liu SS, Zhao XY, Gao M, Wang YX, Yang H (2013) Nanogaps in 2D Ag-nanocap arrays for surface enhanced Raman scattering. J Raman Spectrosc 44:1666–1670CrossRefGoogle Scholar
  3. 3.
    Yi MF, Zhang DG, Wen XL, Fu Q, Wang P, Lu YH, Ming H (2011) Fluorescence enhancement caused by plasmonic coupling between silver nanocubes and silver film. Plasmonics 6:213–217CrossRefGoogle Scholar
  4. 4.
    Politano A, Cupolillo A, Di Profio G, Arafat H, Chiarello G, Curcio E (2016) When plasmonics meets membrane technology. J Phys Condens Matter 28:363003–363014CrossRefGoogle Scholar
  5. 5.
    Ali MR, Ali HR, Rankin CR, El-Sayed MA (2016) Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 102:1–8CrossRefGoogle Scholar
  6. 6.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  7. 7.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. ScienceScience 275:1102–1106CrossRefGoogle Scholar
  8. 8.
    Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys 73:3023–3037CrossRefGoogle Scholar
  9. 9.
    Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  10. 10.
    Myroshnychenko V, Rodrı’guez-Ferna’ndez J, Pastoriza-Santos I, M. Funston A, Novo C, Mulvaney P, M. Liz-Marza’n L, Garcı’a de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37: 1792–1805Google Scholar
  11. 11.
    Lin J, He W, Vilayurganapathy S, Peppernick SJ, Wang B, Palepu S, Remec M, Hess WP, Hmelo AB, Pantelides ST, Dickerson JH (2013) Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films. ACS Appl Mater Interf 5:11590–11596CrossRefGoogle Scholar
  12. 12.
    M. Reinhard B, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5: 2246–2252Google Scholar
  13. 13.
    Charles DE, Aherne D, Gara M, Ledwith DM, Gun’ ko YK, Kelly JM, Blau WJ, Brennan-Fournet M E (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 4: 55–64Google Scholar
  14. 14.
    Chirumamilla M, Gopalakrishnan A, Toma A, Zaccaria RP, Krahne R (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303–235311CrossRefGoogle Scholar
  15. 15.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefGoogle Scholar
  16. 16.
    Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263CrossRefGoogle Scholar
  17. 17.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  18. 18.
    He J, Fan C, Wang J, Ding P, Cia G, Cheng Y, Zhu S, Liang E (2013) A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance. J Opt 15:025007–025014CrossRefGoogle Scholar
  19. 19.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrate. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  20. 20.
    Rudziuk D, Moehwald H (2015) Prospects for plasmonic hot spots in single molecules SERS towards the chemical imaging of live cells. Phys Chem Chem Phys 17:21072–21093CrossRefGoogle Scholar
  21. 21.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Metal Phys 4:999–1014CrossRefGoogle Scholar
  22. 22.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832CrossRefGoogle Scholar
  23. 23.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  24. 24.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  25. 25.
    Gildenburg VB, Kostin VA, Pavlichenko IA (2011) Resonances of surface and volume plasmons in atomic clusters. Physics of Plasmas 18:092101–092106CrossRefGoogle Scholar
  26. 26.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  27. 27.
    Malakoutian M, Byambadorj T, Davaji B, Richie J, Lee CH (2016) Optimization of the bowtie gap geometry for a maximum electric field enhancement. Plasmonics:1–6. doi: 10.1007/s11468-016-0262-x
  28. 28.
    Friebel M, Meinke M (2006) Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 dependent of concentration. Appl Opt 45:2838–2842CrossRefGoogle Scholar
  29. 29.
    Maier SA (2007) Plasmonic: fundamental and applications. Springer, New YorkCrossRefGoogle Scholar
  30. 30.
    Kang H, Yang JK, Noh MS, JO A, Jeong A, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH (2014) One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J. Mater. Chem. B 2: 4415–4421Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran
  2. 2.Nanoscience and Nanotechnology Research CenterRazi UniversityKermanshahIran

Personalised recommendations