, Volume 13, Issue 4, pp 1135–1141 | Cite as

Optical and Thermal Enhancement of Plasmonic Nanofluid Based on Core/Shell Nanoparticles

  • Huiling Duan
  • Liangliang Tang
  • Yuan Zheng
  • Ping ZhangEmail author


The plasmonic effect is introduced in solar thermal areas to enhance light harvest and absorption. The optical properties of plasmonic nanofluid are simulated by finite difference time domain (FDTD) method. Due to the excitation of localized surface plasmon resonance (LSPR) effect, an intensive absorption peak is observed at 0.5 μm. The absorption characteristics are sensitive to particle size and concentration. As the particle size increases, the absorption peak is broadened and shifted to longer wavelength. The absorption of SiO2/Ag plasmonic nanofluid is improved gradually as the volume concentration increases, especially in the UV region. The absorption edge is shifted from 0.6 to 1.0 μm as the volume concentration increases from 0.001 to 0.01. The thermal simulation of suspended SiO2/Ag nanoparticle shows a uniform temperature rise of 17.91 K under solar irradiation (AM 1.5), while under the same condition, the temperature rises in Ag nanoparticle and Al nanoparticle are 11.12 and 5.39 K, respectively. The core/shell plasmonic nanofluid exhibits a higher photothermal performance, which has a potential application in photothermal areas. A higher temperature rise can be obtained by improving the incident light intensity or optical absorption properties of nanoparticles.


Plasmonic effect Photothermal conversion Core/shell nanoparticles Temperature rise 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 51506044) and the Fundamental Research Funds for the Central Universities (2014B13014).


  1. 1.
    Otanicar TP (2011) Enhancing the heat transfer in energy systems from a volumetric approach. In: ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASME, HawaiiGoogle Scholar
  2. 2.
    Lenert A, Wang EN (2012) Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy 86(1):253–265CrossRefGoogle Scholar
  3. 3.
    Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A (2012) Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf 55:5899–5907CrossRefGoogle Scholar
  4. 4.
    Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J Renewable Sustainable Energy 2:033102CrossRefGoogle Scholar
  5. 5.
    Moghadam AJ, Farzane-Gord M, Sajadi M, Hoseyn-Zadeh M (2014) Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Thermal Fluid Sci 58:9–14CrossRefGoogle Scholar
  6. 6.
    Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:225/1–225/11CrossRefGoogle Scholar
  7. 7.
    Lee S-H, Jang SP (2015) Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy. Int J Heat Mass Transf 80:58–71CrossRefGoogle Scholar
  8. 8.
    He Q, Zeng S, Wang S (2015) Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl Therm Eng 88:165–171CrossRefGoogle Scholar
  9. 9.
    Maier SA (2006) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  10. 10.
    Yao J, Le A-P, Gray SK, Moore JS, Rogers JA, Nuzzo RG (2010) Functional nanostructured plasmonic materials. Adv Mater 22:1102–1110CrossRefPubMedGoogle Scholar
  11. 11.
    Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16(24):19579–19591CrossRefPubMedGoogle Scholar
  12. 12.
    Filho EPB, Mendoza OSH, Beicker CLL, Menezes A, Wen D (2014) Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manag 84:261–267CrossRefGoogle Scholar
  13. 13.
    Zhang H, Chen H-J, Du X, Wen D (2014) Photothermal conversion characteristics of gold nanoparticle dispersions. Sol Energy 100:141–147CrossRefGoogle Scholar
  14. 14.
    Li Q, Zhang W, Zhao D, Qiu M (2014) Photothermal enhancement in core-shell structured plasmonic nanoparticles. Plasmonics 9:623–630CrossRefGoogle Scholar
  15. 15.
    Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109(39):18218–18222CrossRefPubMedGoogle Scholar
  16. 16.
    Diao JJ, Chen GD (2001) Electromagnetic cavity resonant absorption of the gold nanoshell. J Phys D Appl Phys 34:L79–L82CrossRefGoogle Scholar
  17. 17.
    Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217–4220CrossRefGoogle Scholar
  18. 18.
    Duan H, Xuan Y (2014) Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system. Appl Energy 114:22–29CrossRefGoogle Scholar
  19. 19.
    Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108(46):17740–17747CrossRefGoogle Scholar
  20. 20.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307CrossRefGoogle Scholar
  21. 21.
    Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934CrossRefGoogle Scholar
  22. 22.
    Palik DE (1985) Handbook of optical constants of solids. Academic Press Inc., LondonGoogle Scholar
  23. 23.
    Qiu TQ, Tien CL (1993) Size effects on nonequilibrium laser heating of metal films. Trans ASME 115:842–847CrossRefGoogle Scholar
  24. 24.
    Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD (2001) Interconnect limits on gigascale integration (GSI) in the 21st century. Proc IEEE 89:305–324CrossRefGoogle Scholar
  25. 25.
    Chen X (2014) Photothermal effect in plasmonic nanostructures and its applications. KTH School of Information and Communication TechnologyGoogle Scholar
  26. 26.
    Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445CrossRefPubMedGoogle Scholar
  27. 27.
    Xuan Y, Duan H, Li Q (2014) Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv 4:16206–16213CrossRefGoogle Scholar
  28. 28.
    Duan H, Xuan Y, Li Q (2015) Optical absorption properties and control method of nanostructures. Chin Sci Bull 60(24):2338–2343CrossRefGoogle Scholar
  29. 29.
    Chu TC, Liu W-C, Tsai DP (2005) Enhanced resolution induced by random silver nanoparticles in near-field optical disks. Opt Commun 246:561–567CrossRefGoogle Scholar
  30. 30.
    Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108(4):1224–1229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Huiling Duan
    • 1
  • Liangliang Tang
    • 1
  • Yuan Zheng
    • 1
  • Ping Zhang
    • 2
    Email author
  1. 1.College of energy and electrical engineeringHohai UniversityNanjingChina
  2. 2.Electromechanical Engineering CollegeGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations