, Volume 13, Issue 4, pp 1121–1127 | Cite as

Fano Resonance of Nanocrescent for the Detection of Single Molecules and Single Nanoparticles

  • Chunjie Zheng
  • Tianqing JiaEmail author
  • Hua Zhao
  • Yingjie Xia
  • Shian Zhang
  • Donghai Feng
  • Zhenrong Sun


This paper reports a theoretical study on the Fano resonance of a 3D nanocrescent and its application in single molecular detection. The resonance wavelength changes with the crescent radius, gap width and thickness. The Fano resonance is attributed to the interference between the quadrupolar mode supported by the horizontal crescent and the quadrupolar mode supported by the nanotip oscillating along the height direction. The Fano resonance is highly sensitive to a nanoparticle trapped by the nanocrescent. The wavelength shift is larger than 0.5 nm when a single protein nanoparticle with radius only of 1.25 nm is trapped. For a protein with radius of 0.3 nm, the wavelength shift is still larger than 0.03 nm, over the detection limit (10−5 nm) by 3 orders in the magnitude, which indicates that the nanocrescent can be used to detect small molecule with several atoms.


Label-free detection Fano resonance Nanocrescent Quadrupolar mode Surface plasmon polaritons 



This work is supported by the National Natural Science Foundation of China (11474097, 11274116, 11374099, 11104178, 51132004), and the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics).


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  2. 2.
    Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305(5685):788–792CrossRefPubMedGoogle Scholar
  3. 3.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460(7259):1110–1112CrossRefPubMedGoogle Scholar
  4. 4.
    Metzger B, Hentschel M, Giessen H (2016) Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics 3(8):1336–1350CrossRefGoogle Scholar
  5. 5.
    Caballero B, García-Martín A, Cuevas JC (2016) Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 3(2):203–208CrossRefGoogle Scholar
  6. 6.
    Zhang WH, Martin OJF (2015) A universal law for plasmon resonance shift in biosensing. ACS Photonics 2(1):144–150CrossRefGoogle Scholar
  7. 7.
    Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefPubMedGoogle Scholar
  8. 8.
    He LN, Özdemir SK, Zhu JG, Kim W, Yang L (2011) Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol 6(7):428–432CrossRefPubMedGoogle Scholar
  9. 9.
    Pang YJ, Gordon R (2012) Optical trapping of a single protein. Nano Lett 12(1):402–406CrossRefPubMedGoogle Scholar
  10. 10.
    Su J, Goldberg AFG, Stoltz BM (2016) Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5:e16001CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S (2013) Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 13(7):3347–3351CrossRefPubMedGoogle Scholar
  12. 12.
    Ament I, Prasad J, Henkel A, Schmachtel S, Sönnichsen C (2012) Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 12(2):1092–1095CrossRefPubMedGoogle Scholar
  13. 13.
    Arroyo JO, Kukura P (2016) Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nat Photonics 10(11):11–17CrossRefGoogle Scholar
  14. 14.
    Baaske MD, Foreman MR, Vollmer F (2014) Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9(11):933–939CrossRefPubMedGoogle Scholar
  15. 15.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715CrossRefPubMedGoogle Scholar
  16. 16.
    Rahmani M, Luk’yanchuk B, Hong MH (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349CrossRefGoogle Scholar
  17. 17.
    Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11(1):69–75CrossRefGoogle Scholar
  18. 18.
    Zhang YY, Li SL, Chen Z, Jiang P, Jiao RZ, Zhang Y, Wang LL, Yu L (2016) Ultra-high sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics doi. doi: 10.1007/s11468-016-0363-6
  19. 19.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401CrossRefPubMedGoogle Scholar
  20. 20.
    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5(3):2042–2050CrossRefPubMedGoogle Scholar
  21. 21.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10(7):2721–2726CrossRefPubMedGoogle Scholar
  22. 22.
    Wu TF, Yang SB, Tan WB, Li XF (2016) Tunable localized hybrid plasmon modes and Fano resonances in Au core-semishell. Plasmonics 11(5):1351–1359CrossRefGoogle Scholar
  23. 23.
    Cheng F, Yang XD, Gao J (2015) Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials. Sci Rep 5:14327CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cui A, Liu Z, Li JF, Shen TH, Xia XX, Li ZY, Gong ZJ, Li HQ, Wang BL, Li JJ, Yang HF, Li WX, Cz G (2015) Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light Sci Appl 4:e308CrossRefGoogle Scholar
  25. 25.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86CrossRefPubMedGoogle Scholar
  26. 26.
    Park KD, Muller EA, Kravtsov V, Sass PM, Dreyer J, Atkin JM, Raschke BM (2016) Variable-temperature tip-enhanced Raman spectroscopy of single-molecule fluctuations and dynamics. Nano Lett 16:479–487CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Y, Jia TQ, Feng DH, Xu ZZ (2011) Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure: local field enhancement and tunability in the visible light region. Appl Phys Lett 98(16):163110CrossRefGoogle Scholar
  28. 28.
    Kim J, Liu GL, Lu Y, Lee LP (2005) Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities. Opt Express 13(21):8332–8338CrossRefPubMedGoogle Scholar
  29. 29.
    Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124CrossRefPubMedGoogle Scholar
  30. 30.
    Wu TF, Yang SB, Li XF (2013) Tunable plasmon resonances and enhanced local fields of spherical nanocrescents. J Phys Chem C 117(16):8397–8403CrossRefGoogle Scholar
  31. 31.
    Wang YF, Zhou WJ, Liu AJ, Chen W, Fu FY, Yan XY, Jiang B, Xue QK, Zheng WH (2011) Optical properties of the crescent and coherent applications. Opt Express 19(9):8303–8311CrossRefPubMedGoogle Scholar
  32. 32.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  33. 33.
    Wu LY, Ross BM, Lee LP (2009) Optical properties of the crescent-shaped nanohole antenna. Nano Lett 9(5):1956–1961CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sartorello G, Olivier N, Zhang JJ, Yue WS, Gosztola DJ, Wiederrecht GP, Wurtz G, Zayats AV (2016) Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3(8):1517–1522CrossRefGoogle Scholar
  35. 35.
    Liu ZG, Liu Z, Li JF, Li WX, Li JJ, Gu CZ, Li ZY (2016) 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci Rep 6:27817CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3(7):935–938CrossRefGoogle Scholar
  37. 37.
    Stan RC, Kros A, Appel J, Sanghamitra NJM (2016) Probing the active site of an azurin mutant hot-wired to gold electrodes. J Phys Chem C 120(14):7639–7645CrossRefGoogle Scholar
  38. 38.
    Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7(6):379–382CrossRefPubMedGoogle Scholar
  39. 39.
    Rahmani M, Lei DY, Giannini V, Luk’yanchuk B, Ranjbar M, Liew TYF, Hong MH, Maier SA (2012) Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12(4):2101–2106CrossRefPubMedGoogle Scholar
  40. 40.
    Unger A, Kreiter M (2009) Analyzing the performance of plasmonic resonators for dielectric sensing. J Phys Chem C 113(28):12243–12251CrossRefGoogle Scholar
  41. 41.
    Chen BQ, Zhang C, Li JF, Li ZY, Xia YN (2016) On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. Nanoscale 8:15730–15736CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chunjie Zheng
    • 1
  • Tianqing Jia
    • 1
    Email author
  • Hua Zhao
    • 1
  • Yingjie Xia
    • 1
  • Shian Zhang
    • 1
  • Donghai Feng
    • 1
  • Zhenrong Sun
    • 1
  1. 1.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations