, Volume 8, Issue 3, pp 1369–1377 | Cite as

In Situ Monitoring of the 2D Aggregation Process of Thiol-Coated Gold Nanoparticles Using Interparticle Plasmon Coupling

  • Hélène Yockell-Lelièvre
  • Daniel Gingras
  • Samuel Lamarre
  • Réal Vallée
  • Anna M. RitceyEmail author


Near-field plasmon coupling between neighboring gold nanoparticles, measured by polarized optical waveguide lightmode spectroscopy, is employed to study the surface self-assembly of alcanethiol-capped gold nanoparticles during solvent evaporation. The waveguide used is a monomode optical fiber half-coupler. The sample is deposited on the surface of the waveguide and absorption spectra are continuously collected during the solvent evaporation process with a temporal resolution of 0.2 s. The absorption spectra show a progressive red shift of the plasmon peak caused by increasing interparticle near-field coupling. This shift can be used to determine the distance between particles by comparison to theoretical values calculated using the discrete dipoles approximation. The technique is demonstrated for the assembly of 10 nm gold particles capped with thiol ligands of two different lengths. Interestingly, in the case of dodecanethiol-capped particles, the extinction spectrum not only shifts to longer wavelengths, but also changes in shape during the drying process. About half a second before the solvent completely evaporates, the spectrum broadens as a second component appears. This feature is tentatively attributed to the formation of a significant population of particle clusters as a result of incomplete screening of van der Waals attractions by the shorter ligand.


Self-assembly Gold nanoparticles Plasmon coupling Optical waveguide spectroscopy 



The authors acknowledge the Centre Québécois sur les Matériaux Fonctionnels (CQMF) and NanoQuébec, le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) and the National Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Supplementary material

11468_2013_9548_MOESM1_ESM.doc (862 kb)
ESM 1 DOC 862 kb
Video clip

TE-polarized OWLS extinction spectra recorded as a function of time during solvent evaporation for citrate-reduced gold NPs capped with dodecanethiol (C12S–). Selected spectra are depicted in Fig. 7. The x-axis corresponds to a wavelength range of 400 to 950 nm. The y-axis corresponds to an absorbance scale of 0 to 0.7 (MPG 2,212 kb)


  1. 1.
    Feldheim DL, Keating CD (1998) Self-assembly of single electron transistors and related devices. Chem Soc Rev 27:1–12CrossRefGoogle Scholar
  2. 2.
    Simon U, Flesch R, Wiggers H, Schön G, Schmid G (1998) Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules. J Mater Chem 8:517–518CrossRefGoogle Scholar
  3. 3.
    Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudonnet JP, Schider G, Gotschy W, Leitner A, Aussenegg FR, Girard C (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593CrossRefGoogle Scholar
  4. 4.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  5. 5.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  6. 6.
    Storhoff JJ, Marla SS, Bao P, Hagenow S, Mehta H, Lucas A, Garimella V, Patno T, Buckingham W, Cork W, Müller UR (2004) Gold nanoparticle-based detection of genomic dna targets on microarrays using a novel optical detection system. Biosens Bioelectron 19:875–883CrossRefGoogle Scholar
  7. 7.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Hodak JH, Henglein A, Hartland GV (2000) Photophysics of nanometer sized metal particles: electron–phonon coupling and coherent excitation of breathing vibrational modes. J Phys Chem B 104:9954–9965CrossRefGoogle Scholar
  9. 9.
    Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309–1315CrossRefGoogle Scholar
  10. 10.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefGoogle Scholar
  11. 11.
    Stanishevsky AV, Williamson H, Yockell-Lelièvre H, Rast L, Ritcey AM (2006) Synthesis of complex shape gold nanoparticles in water and methanol mixtures. J Nanosci Nanotechnol 6:2013–2017CrossRefGoogle Scholar
  12. 12.
    Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430CrossRefGoogle Scholar
  13. 13.
    Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971CrossRefGoogle Scholar
  14. 14.
    Taleb A, Petit C, Pileni MP (1998) Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J Phys Chem B 102:2214–2220CrossRefGoogle Scholar
  15. 15.
    Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRefGoogle Scholar
  16. 16.
    Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125:2896–2898CrossRefGoogle Scholar
  17. 17.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  18. 18.
    Reinhard BM, Siu M, Agarwal H, Alivisatos P, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252CrossRefGoogle Scholar
  19. 19.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticles pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  20. 20.
    Yang L, Wang H, Yan B, Reinhard BM (2010) Calibration of silver plasmon rulers in the 1–25 nm separation range: experimental indications of distinct plasmon coupling regimes. J Phys Chem C 114:4901–4908CrossRefGoogle Scholar
  21. 21.
    Kurrat R, Textor M, Ramsden JJ, Böni P, Spencer ND (1997) Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption. Rev Sci Instrum 68:2172–2176CrossRefGoogle Scholar
  22. 22.
    Qi ZM, Matsuda N, Yoshida T, Asano H, Takatsu A, Kato K (2002) Optical waveguide spectrometer based on thin-film glass plates. Opt Lett 27:2001–2003CrossRefGoogle Scholar
  23. 23.
    Qi Z, Matsuda N, Santos J, Yoshida T, Takatsu A, Kato K (2004) In situ monitoring of metal nanoparticle self-assembly on protein-functionalized glass by broadband optical waveguide spectroscopy. J Colloid Interface Sci 271:249–253CrossRefGoogle Scholar
  24. 24.
    Korgel BA, Fullam S, Connolly S, Fitzmaurice D (1998) Assembly and self-organization of silver nanocrystal superlattices: ordered “soft spheres”. J Phys Chem B 102:8379–8388CrossRefGoogle Scholar
  25. 25.
    Huang S, Tsutsui G, Sakaue H, Shingubara S, Takahagi T (1999) Self-organized gold nanodots array on a silicon substrate and its mechanical stability. Jpn J Appl Phys 38:1473–1476Google Scholar
  26. 26.
    Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499CrossRefGoogle Scholar
  27. 27.
    Draine BT, Flatau PJ (2003) User guide to the discrete dipole approximation code DDSCAT.6.0.
  28. 28.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodiperse gold suspensions. Nature Phys Sci 241:20–22Google Scholar
  29. 29.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  30. 30.
    Yockell-Lelièvre H, Desbiens J, Ritcey AM (2007) Two-dimensional self-organization of polystyrene-capped gold nanoparticles. Langmuir 23:2843–2850CrossRefGoogle Scholar
  31. 31.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  32. 32.
    Doyle WT (1989) Optical properties of a suspension of metal spheres. Phys Rev B 39:9852–9858CrossRefGoogle Scholar
  33. 33.
    El-Kashef H (2002) Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene. Opt Mater 20:81–86CrossRefGoogle Scholar
  34. 34.
    Félidj N, Aubard J, Lévi G (1999) Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids. J Chem Phys 111:1195–1209CrossRefGoogle Scholar
  35. 35.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou SL, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087CrossRefGoogle Scholar
  36. 36.
    Yockell-Lelièvre H, Gingras D, Vallée R, Ritcey AM (2009) Coupling of localized surface plasmon resonance in self-organized polystyrene-capped gold nanoparticle films. J Phys Chem C 113:21293–21302CrossRefGoogle Scholar
  37. 37.
    Nagayama K (1996) Two-dimensional self-assembly of colloids in thin liquid films. Colloids Surf A 109:363–374CrossRefGoogle Scholar
  38. 38.
    Kralchevsky PA, Denkov ND (2001) Capillary forces and structuring in layers of colloid particles. Curr Opin Colloid Interface Sci 6:383–401CrossRefGoogle Scholar
  39. 39.
    Kralchevsky PA, Nagayama K (2001) Particles at fluid interfaces and membranes. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Ohara PC, Leff DV, Heath JR, Gelbart WM (1995) Crystallization of opals from polydisperse nanoparticles. Phys Rev Lett 75:3466–3469CrossRefGoogle Scholar
  41. 41.
    Korgel BA, Fitzmaurice D (1998) Condensation of ordered nanocrystal thin films. Phys Rev Lett 80:3531–3534CrossRefGoogle Scholar
  42. 42.
    de Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interf Sci 27:189–209CrossRefGoogle Scholar
  43. 43.
    Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica IV:1058–1072CrossRefGoogle Scholar
  44. 44.
    Lin JQ, Zhang HW, Chen Z, Zheng YG, Zhang ZQ, Ye HF (2011) Simulation study of aggregations of monolayer-protected gold nanoparticles in solvents. J Phys Chem C 115:18991–18998CrossRefGoogle Scholar
  45. 45.
    Jain PK, El-Sayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers. J Phys Chem C 112:4954–4960CrossRefGoogle Scholar
  46. 46.
    Woo KC, Shao L, Chen H, Liang Y, Wang J, Lin HQ (2011) Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. ACS Nano 5:5976–5986CrossRefGoogle Scholar
  47. 47.
    Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858CrossRefGoogle Scholar
  48. 48.
    Israelachvili J (1992) Intermolecular and surface forces, 2nd edn. Academic, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hélène Yockell-Lelièvre
    • 1
    • 2
    • 4
  • Daniel Gingras
    • 3
    • 4
  • Samuel Lamarre
    • 1
    • 2
    • 4
  • Réal Vallée
    • 3
    • 4
  • Anna M. Ritcey
    • 1
    • 2
    • 4
    Email author
  1. 1.Département de ChimieUniversité LavalQuébecCanada
  2. 2.Centre de Recherche sur les Matériaux Avancés (CERMA)Université LavalQuébecCanada
  3. 3.Département de Physique, Génie Physique et d’OptiqueUniversité LavalQuébecCanada
  4. 4.Centre d’Optique, Photonique et Laser (COPL)Université LavalQuébecCanada

Personalised recommendations