Advertisement

Frontiers of Physics

, 15:11602 | Cite as

Tetrapartite entanglement features of W-Class state in uniform acceleration

  • Qian DongEmail author
  • Ariadna J. Torres-ArenasEmail author
  • Guo-Hua SunEmail author
  • Shi-Hai DongEmail author
Research Article
  • 14 Downloads

Abstract

Using the single-mode approximation, we first calculate entanglement measures such as negativity (1–3 and 1–1 tangles) and von Neumann entropy for a tetrapartite W-Class system in noninertial frame and then analyze the whole entanglement measures, the residual π4 and geometric Π4 average of tangles. Notice that the difference between π4 and Π4 is very small or disappears with the increasing accelerated observers. The entanglement properties are compared among the different cases from one accelerated observer to four accelerated observers. The results show that there still exists entanglement for the complete system even when acceleration r tends to infinity. The degree of entanglement is disappeared for the 1–1 tangle case when the acceleration r > 0.472473. We reexamine the Unruh effect in noninertial frames. It is shown that the entanglement system in which only one qubit is accelerated is more robust than those entangled systems in which two or three or four qubits are accelerated. It is also found that the von Neumann entropy S of the total system always increases with the increasing accelerated observers, but the Sκξ and Sκζδ with two and three involved noninertial qubits first increases and then decreases with the acceleration parameter r, but they are equal to constants 1 and 0.811278 respectively for zero involved noninertial qubit.

Keywords

tetrapartite W-Class state entanglement Dirac field noninertial frames 

Notes

Acknowledgements

We thank the referees for making invaluable suggestions. This work was partially supported by the CONACYT, Mexico under the Grant No. 288856-CB-2016 and partially by 20190234-SIP-IPN, Mexico.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    E. Schrödinger, Discussion of probability relations between separated systems, Math. Proc. Camb. Philos. Soc. 31(4), 555 (1935)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23(48), 807 (1935)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    E. Schrödinger, Probability relations between separated systems, Math. Proc. Camb. Philos. Soc. 32(3), 446 (1936)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 54(8), 4277 (1989)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987zbMATHGoogle Scholar
  9. 9.
    A. Peres, Separability Criterion for density matrices, Phys. Rev. Lett. 77(8), 1413 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Volume of the set of separable states, Phys. Rev. A 58(2), 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Li, C. Liu, Q. Wang, H. Zhang, and L. Hu, Tetrapartite entanglement of fermionic systems in noninertial frames, Optik (Stuttg.) 127(20), 9788 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying Entanglement, Phys. Rev. Lett. 78(12), 2275 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. Vedral and M. B. Plenio, Entanglement measures and purification procedures, Phys. Rev. A 57(3), 1619 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    V. Vedral, M. B. Plenio, K. Jacobs, and P. L. Knight, Statistical inference, distinguishability of quantum states, and quantum entanglement, Phys. Rev. A 56(6), 4452 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, Multiparticle entanglement purification protocols, Phys. Rev. A 57(6), R4075 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    W. Dür, J. I. Cirac, and R. Tarrach, Separability and distillability of multiparticle quantum systems, Phys. Rev. Lett. 83(17), 3562 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible product bases and bound entanglement, Phys. Rev. Lett. 82(26), 5385 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, The classical-quantum boundary for correlations: Discord and related measures, Rev. Mod. Phys. 84(4), 1655 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Montero, J. León, and E. Martín-Martínez, Fermionic entanglement extinction in noninertial frames, Phys. Rev. A 84(4), 042320 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. Shamirzaie, B. N. Esfahani, and M. Soltani, Tripartite entanglements in noninertial frames, Int. J. Theor. Phys. 51(3), 787 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    N. Metwally, Usefulness classes of traveling entangled channels in noninertial frames, Int. J. Mod. Phys. B 27(28), 1350155 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26(5), 1411 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer-Verlag, Berlin, 2000zbMATHCrossRefGoogle Scholar
  26. 26.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    B. M. Terhal, Is entanglement monogamous? IBM J. Res. Develop. 48(1), 71 (2004)CrossRefGoogle Scholar
  28. 28.
    A. Sen De and U. Sen, Quantum advantage in communication networks, Phys. News 40(4), 17 (2010)Google Scholar
  29. 29.
    P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Y. Xiong, X. T. Yu, Z. C. Zhang, H. T. Zhan, and J. Y. Hua, Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state, Front. Phys. 12(4), 120302 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)CrossRefGoogle Scholar
  32. 32.
    R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, Measurement-based quantum computation, Nat. Phys. 5, 19 (2009)CrossRefGoogle Scholar
  34. 34.
    M. R. Hwang, D. Park, and E. Jung, Tripartite entanglement in a noninertial frame, Phys. Rev. A 83, 012111 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75, 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985, p. 205, 415, 441CrossRefGoogle Scholar
  38. 38.
    S. Gartzke and A. Osterloh, Generalized W state of four qubits with exclusively the three-tangle, Phys. Rev. A 98(5), 052307 (2018)CrossRefGoogle Scholar
  39. 39.
    D. K. Park, Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment, Quantum Inform. Process. 15(8), 3189 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    A. J. Torres-Arenas, Q. Dong, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of W-state in noninertial frames, Phys. Lett. B 789, 93 (2019)ADSCrossRefGoogle Scholar
  41. 41.
    X. H. Peng and D. Suter, Spin qubits for quantum simulations, Front. Phys. China 5(1), 1 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    S. Takagi, Vacuum noise and stress induced by uniform acceleration, Prog. Theor. Phys. Suppl. 88, 1 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    E. Martín-Martínez, L. J. Garay, and J. León, Unveiling quantum entanglement degradation near a Schwarzschild black hole, Phys. Rev. D 82(6), 064006 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    E. Martín-Martínez, L. J. Garay, and J. León, Quantum entanglement produced in the formation of a black hole, Phys. Rev. D 82(6), 064028 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Socolovsky, Rindler space and Unruh effect, arXiv: 1304.2833v2 [gr-qc]Google Scholar
  47. 47.
    M. Nakahara, Y. Wan, and Y. Sasaki, Diversities in Quantum Computation and Quantum Information, World Scientific, Singapore, 2013zbMATHGoogle Scholar
  48. 48.
    N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University, Cambridge, England, 1982CrossRefGoogle Scholar
  49. 49.
    A. Smith and R. B. Mann, Persistence of tripartite non-locality for noninertial observers, Phys. Rev. A 86(1), 012306 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    W. C. Qiang and L. Zhang, Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames, Phys. Lett. B 742, 383 (2015)ADSzbMATHCrossRefGoogle Scholar
  52. 52.
    Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)CrossRefGoogle Scholar
  53. 53.
    H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    E. Martín-Martínez, D. Hosler, and M. Montero, Fundamental limitations to information transfer in accelerated frames, Phys. Rev. A 86(6), 062307 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    N. Friis, A. R. Lee, and D. E. Bruschi, Fermionic-mode entanglement in quantum information, Phys. Rev. A 87(2), 022338 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    A. Dragan, J. Doukas, E. Martín-Martínez, and D. E. Bruschi, Localized projective measurement of a quantum field in non-inertial frames, Class. Quantum Gravity 30(23), 235006 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    J. Doukas, E. G. Brown, A. Dragan, and R. B. Mann, Entanglement and discord: Accelerated observations of local and global modes, Phys. Rev. A 87(1), 012306 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    A. Dragan, J. Doukas, and E. Martín-Martínez, Localized detection of quantum entanglement through the event horizon, Phys. Rev. A 87(5), 052326 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    C. P. Williams, Explorations in Quantum Computing, Springer Science and Business Media, New York, 2010zbMATHGoogle Scholar
  61. 61.
    D. S. Oliveira and R. V. Ramos, Residual entanglement with negativity for pure four-qubit quantum states, Quantum Inform. Process. 9(4), 497 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    C. Sabín and G. García-Alcaine, A classification of entanglement in three-qubit systems, Eur. Phys. J. D 48(3), 435 (2008)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, New Jersey, 1996zbMATHGoogle Scholar
  64. 64.
    B. Lari and H. Hassanabadi, Thermal entanglement, specific heat and quantum discord in open quantum systems including non-markovian processes, Mod. Phys. Lett. A 34(11), 1950059 (2019), arXiv: 1704.02811ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    W. S. Chung and H. Hassanabadi, Black hole temperature and Unruh effect from the extended uncertainty principle, Phys. Lett. B 793, 451 (2019)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratorio de Informatión Cuántica, CIDETEC, Instituto Politécnico NationalUPALM, CDMXMexicoMexico
  2. 2.Catedrática CONACyT, Centro de Investigatión en Computatión, Instituto Politécnico NationalUPALM, CDMXMexicoMexico

Personalised recommendations