Advertisement

Frontiers of Physics

, 15:13602 | Cite as

Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay

  • Yan-Ping Liu (刘艳平)
  • Xiang Li (李翔)
  • Jing Qu (屈静)
  • Xue-Juan Gao (高学娟)
  • Qing-Zu He (何情祖)
  • Li-Yu Liu (刘雳宇)
  • Ru-Chuan Liu (刘如川)Email author
  • Jian-Wei Shuai (帅建伟)Email author
Research Article
  • 13 Downloads

Abstract

Cell migration through anisotropic microenvironment is critical to a wide variety of physiological and pathological processes. However, adequate analytical tools to derive motile parameters to characterize the anisotropic migration are lacking. Here, we proposed a method to obtain the four motile parameters of migration cells based on the anisotropic persistent random walk model which is described by two persistence times and two migration speeds at perpendicular directions. The key process is to calculate the velocity power spectra of cell migration along intrinsically perpendicular directions respectively, then to apply maximum likelihood estimation to derive the motile parameters from the power spectra fitting with double exponential decay. The simulation results show that the averaged persistence times and the corrected migration speeds can be good estimations for motile parameters of cell migration.

Keywords

cell migration heterogeneity power spectrum random walk Langevin equation 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11675134, 11874310, 11474345, and 11604030), the 111 Project (Grant No. B160229), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).

References

  1. 1.
    M. Vicente-Manzanares and A. R. Horwitz, Cell migration: An overview, Methods Mol. Biol. 769, 1 (2011)CrossRefGoogle Scholar
  2. 2.
    D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, and I. A. Zhuravin, Prenatal hypoxia in different periods of embryogenesis differentially affects cell migration, neuronal plasticity, and rat behavior in postnatal ontogenesis, Front. Neurosci. 10, 126 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Zalokar and I. Erk, J. Microsc. Biol. Cell. 25, 97 (1976)Google Scholar
  4. 4.
    P. Kulesa, D. L. Ellies, and P. A. Trainor, Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis, Dev. Dyn. 229(1), 14 (2004)CrossRefGoogle Scholar
  5. 5.
    W. S. Krawczyk, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49(2), 247 (1971)CrossRefGoogle Scholar
  6. 6.
    G. D. Sharma, J. He, and H. E. P. Bazan, p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: Evidence of cross-talk activation between MAP kinase cascades, J. Biol. Chem. 278(24), 21989 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Tao, A. Robichaud, S. Nadeau, R. Savoie, B. Gallant, and R. Ouellette, Effect of cumulus cell removal on the fertilization and the day 3 embryo quality in human IVF, International Congress Series 1271, 135 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Bowszyc, J. Bowszyc, and T. Machońko, 15-years of studies of the immunological cellular response in syphilis in humans using migration inhibition tests, Przegl. Dermatol. 72(2), 134 (1985)Google Scholar
  9. 9.
    H. Zhang, Y. Han, J. Tao, S. Liu, C. Yan, and S. Li, Cellular repressor of E1A-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway, Exp. Cell Res. 317(20), 2904 (2011)CrossRefGoogle Scholar
  10. 10.
    X. L. Fang Wei, M. Cai, Y. Liu, P. Jung, and J. W. Shuai, Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells, Front. Phys. 12(3), 128702 (2017)CrossRefGoogle Scholar
  11. 11.
    S. X. Liu, Y. Z. Geng, and S. W. Yan, Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy, Front. Phys. 12(3), 128908 (2017)CrossRefGoogle Scholar
  12. 12.
    H. C. Berg and F. Dyson, Random walks in biology, Phys. Today 40(3), 73 (1987)CrossRefGoogle Scholar
  13. 13.
    L. X. Li, Photon diffusion in a relativistically expanding sphere, Front. Phys. 8(5), 555 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    X. H. Li, G. Yang, and J. P. Huang, Chaotic-periodic transition in a two-sided minority game, Front. Phys. 11(4), 118901 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Huang, C. P. Brangwynne, K. K. Parker, and D. E. Ingber, Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistence, Cell Motil. Cytoskeleton 61(4), 201 (2005)CrossRefGoogle Scholar
  16. 16.
    Z. X. Niu, T. Hang, and Y. Chen, Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces, Front. Phys. 13(5), 137804 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. A. Yan and J. S. Shao, Stochastic description of quantum Brownian dynamics, Front. Phys. 11(4), 110309 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Boguñá, J. M. Porrà, and J. Masoliver, Generalization of the persistent random walk to dimensions greater than 1, Phys. Rev. E 58(6), 6992 (1998)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Peggy, A. L. Ny, B. D. Loynes, et al., Persistent random walks (I): Recurrence versus transience, J. Theor. Probab. 31(1), 1 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    H. I. Wu, B. L. Li, T. A. Springer, and W. H. Neill, Modelling animal movement as a persistent random walk in two dimensions: Expected magnitude of net displacement, Ecol. Modell. 132(1–2), 115 (2000)CrossRefGoogle Scholar
  21. 21.
    M. Schienbein and H. Gruler, Langevin equation, Fokker-Planck equation and cell migration, Bull. Math. Biol. 55(3), 585 (1993)zbMATHCrossRefGoogle Scholar
  22. 22.
    D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris) 146, 530–533 (1908)], Am. J. Phys. 65(11), 1079 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    J. L. Parada, G. Carrillo-Castañeda, and M. V. Ortega, Profile of the enzymes of the Krebs cycle in Salmonella typhimurium during the utilization of succinate, acetate, and citrate for growth, Rev. Latinoam. Microbiol. 15, 29 (1973)Google Scholar
  24. 24.
    C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15(3), 311 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Wang, J. Kuo, S. C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu, and C. A. Hunter, Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells, Nature 486(7404), 545 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt, and J. D. Metcalfe, Scaling laws of marine predator search behaviour, Nature 451(7182), 1098 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Czirók, K. Schlett, E. Madarasz, and T. Vicsek, Exponential distribution of locomotion activity in cell cultures, Phys. Rev. Lett. 81(14), 3038 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    A. Upadhyaya, J. P. Rieu, J. A. Glazier, and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A 293(3–4), 549 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg, Cell motility as persistent random motion: Theories from experiments, Biophys. J. 89(2), 912 (2005)CrossRefGoogle Scholar
  31. 31.
    L. Liu, G. Duclos, B. Sun, J. Lee, A. Wu, Y. Kam, E. D. Sontag, H. A. Stone, J. C. Sturm, R. A. Gatenby, and R. H. Austin, Minimization of thermodynamic costs in cancer cell invasion, Proc. Natl. Acad. Sci. USA 110(5), 1686 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J. Zhu, L. Liang, Y. Jiao, and L. Liu, Enhanced invasion of metastatic cancer cells via extracellular matrix interface, PLOS One 10(2), e0118058 (2015)CrossRefGoogle Scholar
  33. 33.
    P. H. Wu, A. Giri, S. X. Sun, and D. Wirtz, Three-dimensional cell migration does not follow a random walk, Proc. Natl. Acad. Sci. USA 111(11), 3949 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    P. H. Wu, A. Giri, and D. Wirtz, Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model, Nat. Protoc. 10(3), 517 (2015)CrossRefGoogle Scholar
  35. 35.
    B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 (1968)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339(1), 1 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    B. Liu and J. Goree, Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett. 100(5), 055003 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells, Biophys. J. 87(5), 3518 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    C. L. Stokes, D. A. Lauffenburger, and S. K. Williams, Migration of individual microvessel endothelial cells: Stochastic model and parameter measurement, J. Cell. Sci. 99(Pt 2), 419 (1991)Google Scholar
  40. 40.
    L. Li, E. C. Cox, and H. Flyvbjerg, “Dicty dynamics”: Dictyostelium motility as persistent random motion, Phys. Biol. 8(4), 046006 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76(4), 046602 (2013)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    V. Zaburdaev, S. Denisov, and J. Klafter, Lévy walks, Rev. Mod. Phys. 87(2), 483 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    R. T. Tranquillo, D. A. Lauffenburger, and S. H. Zigmond, A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations, J. Cell Biol. 106(2), 303 (1988)CrossRefGoogle Scholar
  44. 44.
    G. A. Dunn, Characterising a kinesis response: Time averaged measures of cell speed and directional persistence, Agents Actions Suppl. 12, 14 (1983)Google Scholar
  45. 45.
    C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J. Theor. Biol. 152(3), 377 (1991)CrossRefGoogle Scholar
  46. 46.
    M. R. Parkhurst and W. M. Saltzman, Quantification of human neutrophil motility in three-dimensional collagen gels: Effect of collagen concentration, Biophys. J. 61(2), 306 (1992)CrossRefGoogle Scholar
  47. 47.
    R. Gorelik and A. Gautreau, Quantitative and unbiased analysis of directional persistence in cell migration, Nat. Protoc. 9(8), 1931 (2014)CrossRefGoogle Scholar
  48. 48.
    J. N. Pedersen, L. Li, C. Grǎdinaru, R. H. Austin, E. C. Cox, and H. Flyvbjerg, How to connect time-lapse recorded trajectories of motile microorganisms with dynamical models in continuous time, Phys. Rev. E 94(6–1), 062401 (2016)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B 39(1), 1 (1977)MathSciNetzbMATHGoogle Scholar
  50. 50.
    C. L. Vestergaard, J. N. Pedersen, K. I. Mortensen, and H. Flyvbjerg, Estimation of motility parameters from trajectory data, Eur. Phys. J. Spec. Top. 224(7), 1151 (2015)CrossRefGoogle Scholar
  51. 51.
    C. L. Vestergaard, P. C. Blainey, and H. Flyvbjerg, Optimal estimation of diffusion coefficients from single-particle trajectories, Phys. Rev. E 89(2), 022726 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    J. H. Chen and H. Y. Fan, On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations, Front. Phys. 10(1), 100301 (2015)CrossRefGoogle Scholar
  53. 53.
    Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)CrossRefGoogle Scholar
  54. 54.
    K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res. 30(14), 3059 (2002)CrossRefGoogle Scholar
  55. 55.
    S. B. Weinstein and P. M. Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform, IEEE Trans. Commun. Tech. 19, 628 (1971)CrossRefGoogle Scholar
  56. 56.
    S. F. Nørrelykke and H. Flyvbjerg, Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers, Rev. Sci. Instrum. 81(7), 075103 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Y. Liu, X. Zhang, Y. Wu, W. Liu, X. Li, R. Liu, L. Liu, and J. Shuai, Derivation of persistent time for anisotropic migration of cells, Chin. Phys. B 26(12), 128707 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    N. Le Bihan and J. Mars, Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing, Signal Processing 84(7), 1177 (2004)zbMATHCrossRefGoogle Scholar
  59. 59.
    M. E. Wall, A. Rechtsteiner, and L. M. Rocha, Singular value decomposition and principal component analysis, arXiv: physics/0208101v4 (2002)Google Scholar
  60. 60.
    K. Berg-Sørensen and H. Flyvbjerg, Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75(3), 594 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    J. R. Xie and B. H. Wang, Modularity-like objective function in annotated networks, Front. Phys. 12(6), 128903 (2017)CrossRefGoogle Scholar
  62. 62.
    R. Gorelik and A. Gautreau, The Arp2/3 inhibitory protein arpin induces cell turning by pausing cell migration, Cytoskeleton (Hoboken) 72(7), 362 (2015)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Yan-Ping Liu (刘艳平)
    • 1
  • Xiang Li (李翔)
    • 1
    • 2
  • Jing Qu (屈静)
    • 1
  • Xue-Juan Gao (高学娟)
    • 1
  • Qing-Zu He (何情祖)
    • 1
  • Li-Yu Liu (刘雳宇)
    • 3
  • Ru-Chuan Liu (刘如川)
    • 3
    Email author
  • Jian-Wei Shuai (帅建伟)
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of PhysicsXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling NetworkXiamen UniversityXiamenChina
  3. 3.College of PhysicsChongqing UniversityChongqingChina
  4. 4.National Institute for Big Data in Healthcare at Xiamen UniversityXiamenChina

Personalised recommendations