Frontiers of Physics

, 14:22601 | Cite as

Optomechanical properties of a degenerate nonperiodic cavity chain

  • Miao-Miao Zhao
  • Zhuo Qian
  • Bang-Pin HouEmail author
  • Yong Liu
  • Yong-Hong Zhao
Research article


The absorption of single-cavity and double-cavity optomechanical systems and periodic optomechanical lattices has previously been investigated extensively. In this paper, we present the absorption of a nonperiodic cavity chain, where the absorption value on the resonance point shows switchable dips or peaks, according to whether the optomechanical interaction is at an odd or even-numbered position in the chain. Meanwhile, the value of absorption due to the optomechanical interaction varies with the number of the bare cavities. The calculated results may have some novel applications, such as detecting the position of the movable mirror in a long cavity chain, which would be useful in quantum information processing based on optomechanical systems.


optomechanics optomechanically induced transparency (OMIT) 


  1. 1.
    M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)Google Scholar
  2. 2.
    J. Q. Liao and C. K. Law, Cooling of a mirror in cavity optomechanics with a chirped pulse, Phys. Rev. A 84(5), 053838 (2011)Google Scholar
  3. 3.
    S. Huang and G. S. Agarwal, Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes, Phys. Rev. A 83(2), 023823 (2011)Google Scholar
  4. 4.
    M. Aspelmeyer, P. Meystre, and K. Schwab, Quantum optomechanics, Phys. Today 65(7), 29 (2012)Google Scholar
  5. 5.
    J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. Whittaker, K. Lehnert, and R. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)Google Scholar
  6. 6.
    S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M. B. Plenio, and A. Retzker, Pulsed laser cooling for cavity optomechanical resonators, Phys. Rev. Lett. 108(15), 153601 (2012)Google Scholar
  7. 7.
    J. Chan, T. P. M. Alegre, A. H. Safavi Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature 478(7367), 89 (2011)Google Scholar
  8. 8.
    M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett. 99(7), 073601 (2007)Google Scholar
  9. 9.
    P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107(6), 063601 (2011)Google Scholar
  10. 10.
    M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, Enhanced quantum nonlinearities in a two-mode optomechanical system, Phys. Rev. Lett. 109(6), 063601 (2012)Google Scholar
  11. 11.
    X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)Google Scholar
  12. 12.
    Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)Google Scholar
  13. 13.
    S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)Google Scholar
  14. 14.
    M. J. Hartmann and M. B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett. 101(20), 200503 (2008)Google Scholar
  15. 15.
    D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)Google Scholar
  16. 16.
    J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116(16), 163602 (2016)Google Scholar
  17. 17.
    X. G. Zhan, L. G. Si, A. S. Zheng, and X. Yang, Tunable slow light in a quadratically coupled optomechanical system, J. Phys. At. Mol. Opt. Phys. 46(2), 025501 (2013)Google Scholar
  18. 18.
    A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)Google Scholar
  19. 19.
    K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603 (2012)Google Scholar
  20. 20.
    A. Safavi-Naeini and O. Painter, Proposal for an optomechanical traveling wave phonon-photon translator, New J. Phys. 13(1), 013017 (2011)Google Scholar
  21. 21.
    M. Schmidt, M. Ludwig, and F. Marquardt, Optomechanical circuits for nanomechanical continuous variable quantum state processing, New J. Phys. 14(12), 125005 (2012)Google Scholar
  22. 22.
    M. Pang, W. He, X. Jiang, and P. Russell, All-optical bit storage in a fibre laser by optomechanically bound states of solitons, Nat. Photonics 10(7), 454 (2016)Google Scholar
  23. 23.
    S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett. 108(12), 120801 (2012)Google Scholar
  24. 24.
    M. Li, W. Pernice, and H. X. Tang, Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett. 97(18), 183110 (2010)Google Scholar
  25. 25.
    C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Electromagnetically induced transparency and slow light in two-mode optomechanics, Opt. Express 21(10), 12165 (2013)Google Scholar
  26. 26.
    K. H. Qu and G. S. Agarwal, Phonon-mediated electromagnetically induced absorption in hybrid optoelectromechanical systems, Phys. Rev. A 87, 031802(R) (2013)Google Scholar
  27. 27.
    B. P. Hou, L. F. Wei, and S. J. Wang, Optomechanically induced transparency and absorption in hybridized optomechanical systems, Phys. Rev. A 92(3), 033829 (2015)Google Scholar
  28. 28.
    Z. Qian, M. M. Zhao, B. P. Hou, and Y. H. Zhao, Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems, Opt. Express 25(26), 33097 (2017)Google Scholar
  29. 29.
    A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, Optically mediated hybridization between two mechanical modes, Phys. Rev. Lett. 112(1), 013602 (2014)Google Scholar
  30. 30.
    C. Bai, B. P. Hou, D. G. Lai, and D. Wu, Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir, Phys. Rev. A 93(4), 043804 (2016)Google Scholar
  31. 31.
    A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Reservoir engineering and dynamical phase transitions in optomechanical arrays, Phys. Rev. A 86(3), 033821 (2012)Google Scholar
  32. 32.
    W. Chen and A. A. Clerk, Photon propagation in a onedimensional optomechanical lattice, Phys. Rev. A 89(3), 033854 (2014)Google Scholar
  33. 33.
    G. D. de Moraes Neto, F. M. Andrade, V. Montenegro, and S. Bose, Quantum state transfer in optomechanical arrays, Phys. Rev. A 93(6), 062339 (2016)Google Scholar
  34. 34.
    Z. Duan and B. Fan, Coherently slowing light with a coupled optomechanical crystal array, Europhys. Lett. 99(4), 44005 (2012)Google Scholar
  35. 35.
    OMPY is programmed by python combined with fortran, devoted to solve an optomechanical system consisted of multiple cavities by the standard linearization method. OMPY starts with an optomechanical Hamiltonian and then generates the Heisenberg-Langevin equations, which are solved by the standard linearization procedure, automatically.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miao-Miao Zhao
    • 1
  • Zhuo Qian
    • 1
  • Bang-Pin Hou
    • 1
    Email author
  • Yong Liu
    • 2
  • Yong-Hong Zhao
    • 1
  1. 1.College of Physics and Electronic Engineering, Center for Computational SciencesSichuan Normal UniversityChengduChina
  2. 2.State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of ScienceYanshan UniversityQinhuangdaoChina

Personalised recommendations