Advertisement

Frontiers of Physics

, 14:53601 | Cite as

Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature

  • Ai-Yuan HuEmail author
  • Lin WenEmail author
  • Guo-Pin Qin
  • Zhi-Min Wu
  • Peng Yu
  • Yu-Ting Cui
Research Article
  • 1 Downloads

Abstract

The frustrated spin-1/2 J1aJ1bJ2 antiferromagnet with anisotropy on the two-dimensional square lattice was investigated, where the parameters J1a and J1b represent the nearest neighbor exchanges and along the x and y directions, respectively. J2 represents the next-nearest neighbor exchange. The anisotropy includes the spatial and exchange anisotropies. Using the double-time Green’s function method, the effects of the interplay of exchanges and anisotropy on the possible phase transition of the Néel state and stripe state were discussed. Our results indicated that, in the case of anisotropic parameter 0 ≤ η ≤ 1, the Néel and stripe states can exist and have the same critical temperature as long as J2 = J1b/2. Under such parameters, a first-order phase transformation between the Néel and stripe states can occur below the critical point. For J2J1b/2, our results indicate that the Néel and stripe states can also exist, while their critical temperatures differ. When J2 > J1b/2, a first-order phase transformation between the two states may also occur. However, for J2 < J1b/2, the Néel state is always more stable than the stripe state.

Keywords

frustrated Heisenberg model quantum phase transition magnetic anisotropy antiferromagnetics 

Notes

Acknowledgements

A. Y. Hu would like to thank Prof. Huai-Yu Wang of Tsinghua University for useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11404046 and 11875010) and the Foundation for the Creative Research Groups of Higher Education of Chongqing (No. CXTDX201601016).

References

  1. 1.
    G. Misguich and C. Lhuillier, Frustrated Spin Systems, 2nd Ed., edited by H. T. Diep, World Scientific, 2013Google Scholar
  2. 2.
    J. R. Viana and J. R. deSousa, Anisotropy effects in frustrated Heisenberg antiferromagnets on a square lattice, Phys. Rev. B 75(5), 052403 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Z. Ren, N. H. Tong, and X. C. Xie, Cluster mean-field theory study of J 1J 2 Heisenberg model on a square lattice, J. Phys.: Condens. Matter 26(11), 115601 (2014)Google Scholar
  4. 4.
    S. S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette ordered phase and quantum phase diagram in the spin-1/2 J 1J 2 Square Heisenberg Model, Phys. Rev. Lett. 113(2), 027201 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    H. C. Jiang, H. Yao, and L. Balents, Spin liquid ground state of the spin-1/2 square J 1J 2 Heisenberg model, Phys. Rev. B 86(2), 024424 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    B. Schmidt, M. Siahatgar, and P. Thalmeier, Ordered moment in the anisotropic and frustrated square lattice Heisenberg model, Phys. Rev. B 83(7), 075123 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger, and J. Richter, Ground state phases of the spin-1/2 J 1J 2 Heisenberg antiferromagnet on the square lattice: A high-order coupled cluster treatment, Phys. Rev. B 78(21), 214415 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    R. L. Doretto, Plaquette valence-bond solid in the square-lattice J 1–J2 antiferromagnet Heisenberg model: A bond operator approach, Phys. Rev. B 89(10), 104415 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T. Roscilde, A. Feiguin, A. L. Chernyshev, S. Liu, and S. Haas, Anisotropy-induced ordering in the quantum J 1J 2antiferromagnet, Phys. Rev. Lett. 93(1), 017203 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    J. F. Yu and Y. J. Kao, Spin-1/2 J 1J 2 Heisenberg antiferromagnet on a square lattice: A plaquette renormalized tensor network study, Phys. Rev. B 85(9), 094407 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell, Magnetic order in a spin-1/2 interpolating square-triangle Heisenberg antiferromagnet, Phys. Rev. B 79(17), 174405 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J. Richter, Effect of anisotropy on the ground-state magnetic ordering of the spin-half quantum J 1 XXZJ 2 XXZ model on the square lattice, Phys. Rev. B 78(5), 054412 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L. Wang, Z. C. Gu, F. Verstraete, and X. G. Wen, Tensor-product state approach to spin-12 square J 1J 2 antifer-romagnetic Heisenberg model: Evidence for deconfined quantum criticality, Phys. Rev. B 94(7), 075143 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferro-magnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Nersesyan and A. M. Tsvelik, Spinons in more than one dimension: Resonance valence bond state stabilized by frustration, Phys. Rev. B 67(2), 024422 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    K. Majumdar, Second-order quantum corrections for the frustrated spatially anisotropic spin-1/2 Heisenberg antiferromagnet on a square lattice, Phys. Rev. B 82(14), 144407 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    K. Majumdar, Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice, J. Phys.: Condens. Matter 23(4), 046001 (2011)ADSGoogle Scholar
  18. 18.
    A. A. Tsirlin and H. Rosner, Extension of the spin-1/2 frustrated square lattice model: The case of layered vanadium phosphates, Phys. Rev. B 79(21), 214417 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    O. Volkova, I. Morozov, V. Shutov, E. Lapsheva, P. Sindzingre, O. Cépas, M. Yehia, V. Kataev, R. Klingeler, B. Büchner, and A. Vasiliev, Realization of the Nersesyan-Tsvelik model in (NO)(Cu(NO3)3), Phys. Rev. B 82(5), 054413 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    O. Janson, A. A. Tsirlin, and H. Rosner, Antiferromagnetic spin-1/2 chains in (NO)Cu(NO3)3: A microscopic study, Phys. Rev. B 82(18), 184410 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    H. Y. Wang, Green’s Function in Condensed Matter Physics, Alpha Science International Ltd. and Science Press, 2012Google Scholar
  22. 22.
    P. Fröbrich and P. J. Kuntz, Many-body Green’s function theory of Heisenberg films, Phys. Rep. 432(5–6), 223 (2006)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Y. Hu and Q. Wang, The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets, Solid State Commun. 150(13–14), 568 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Y. Hu and H. Y. Wang, The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3, J. Appl. Phys. 116(19), 193903 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Y. Wang, L. J. Zhai, and M. Qian, The internal energies of Heisenberg magnetic systems, J. Magn. Magn. Mater. 354(3), 309 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina

Personalised recommendations