Frontiers of Physics

, 14:31602 | Cite as

Single-step multipartite entangled states generation from coupled circuit cavities

  • Xiao-Tao Mo
  • Zheng-Yuan XueEmail author
Research article


Green–Horne–Zeilinger states are a typical type of multipartite entangled states, which plays a central role in quantum information processing. For the generation of multipartite entangled states, the singlestep method is more preferable as the needed time will not increase with the increasing of the qubit number. However, this scenario has a strict requirement that all two-qubit interaction strengths should be the same, or the generated state will be of low quality. Here, we propose a scheme for generating multipartite entangled states of superconducting qubits, from a coupled circuit cavities scenario, where we rigorously achieve the requirement via adding an extra z-direction ac classical field for each qubit, leading the individual qubit-cavity coupling strength to be tunable in a wide range, and thus can be tuned to the same value. Meanwhile, in order to obtain our wanted multi-qubits interaction, xdirection ac classical field for each qubit is also introduced. By selecting the appropriate parameters, we numerically shown that high-fidelity multi-qubit GHZ states can be generated. In addition, we also show that the coupled cavities scenario is better than a single cavity case. Therefore, our proposal represents a promising alternative for multipartite entangled states generation.


quantum information processing quantum entanglement quantum state engineering 



This work was supported by the National Natural Science Foundation of China (Grant No. 11874156), the Key R&D Program of Guangdong Province (Grant No. 2018B0303326001), and the National Key R&D Program of China (Grant No. 2016 YFA0301803).


  1. 1.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000zbMATHGoogle Scholar
  2. 2.
    R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. J. Leggett, Realism and the physical world, Rep. Prog. Phys. 71(2), 022001 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Quantum information processing and communication, Eur. Phys. J. D 36(2), 203 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Bells theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature 467(7315), 570 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett. 117(25), 250502 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarization-entangled decoherence-free states, Ann. Phys. 371, 287 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. X. Dong, W. Zhang, Z. B. Hou, Y. C. Yu, S. Shi, D. S. Ding, and B. S. Shi, Experimental realization of narrowband four-photon Greenberger–Horne–Zeilinger state in a single cold atomic ensemble, Opt. Lett. 42(22), 4691 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Groundstate blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    R. Y. Yan, Z. B. Feng, C. L. Zhang, M. Li, X. J. Lu, and Y. Q. Zhou, Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity, Laser Phys. Lett. 15(11), 115205 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    C. P. Yang, and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Mølmer and A. Sørensen, Multiparticle entanglement of hot trapped ions, Phys. Rev. Lett. 82(9), 1835 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    S. B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87(23), 230404 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    F. Plastina, R. Fazio, and G. Massimo Palma, Macroscopic entanglement in Josephson nanocircuits, Phys. Rev. B 64(11), 113306 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    S. B. Zheng, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity, Phys. Rev. A 66(6), 060303 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    D. I. Tsomoko, S. Ashhab, and F. Nori, Fully connected net-work of superconducting qubits in a cavity, New J. Phys. 10(11), 113020 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    A. Galiautdinov and J. M. Martinis, Maximally entangling tripartite protocols for Josephson phase qubits, Phys. Rev. A 78, 010305(R) (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhang, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori, Generating stationary entangled states in superconducting qubits, Phys. Rev. A 79(5), 052308 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    C. L. Hutchison, J. M. Gambetta, A. Blais, and F. K. Wilhelm, Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement, Can. J. Phys. 87(3), 225 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett. 106(13), 130506 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and H. Wang, Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett. 117(11), 110501 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)CrossRefGoogle Scholar
  36. 36.
    J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    E. Solano, G. S. Agarwal, and H. Walther, Strongdriving- assisted multipartite entanglement in cavity QED, Phys. Rev. Lett. 90(2), 027903 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations