Frontiers of Physics

, 14:33403 | Cite as

Review of borophene and its potential applications

  • Zhi-Qiang Wang
  • Tie-Yu Lü
  • Hui-Qiong Wang
  • Yuan Ping FengEmail author
  • Jin-Cheng ZhengEmail author
Review Article


Since two-dimensional boron sheet (borophene) synthesized on Ag substrates in 2015, research on borophene has grown fast in the fields of condensed matter physics, chemistry, material science, and nanotechnology. Due to the unique physical and chemical properties, borophene has various potential applications. In this review, we summarize the progress on borophene with a particular emphasis on the recent advances. First, we introduce the phases of borophene by experimental synthesis and theoretical predictions. Then, the physical and chemical properties, such as mechanical, thermal, electronic, optical and superconducting properties are summarized. We also discuss in detail the utilization of the borophene for wide ranges of potential application among the alkali metal ion batteries, Li-S batteries, hydrogen storage, supercapacitor, sensor and catalytic in hydrogen evolution, oxygen reduction, oxygen evolution, and CO2 electroreduction reaction. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.


borophene structural diversity high anisotropy boron vacancy concentration 



This work was supported by the Fundamental Research Funds for Central Universities (Grant No. 20720160020), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No. U1501501, the National Natural Science Foundation of China (Grant Nos. 11335006 and 51661135011). This work was also supported by China Scholarship Council (CSC NO. 201706310088).


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, Firstprinciples study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries, J. Appl. Phys. 112(10), 104316 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    N. Wei, Y. Chen, K. Cai, J. Zhao, H. Q. Wang, and J. C. Zheng, Thermal conductivity of graphene kirigami: Ultralow and strain robustness, Carbon 104, 203 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, Y. Zhang, K. Cai, J. Jiang, J. C. Zheng, J. Zhao, and N. Wei, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon 117, 399 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B 113(1), 2 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. P. Feng, L. Shen, M. Yang, A. Z. Wang, M. G. Zeng, Q. Y. Wu, S. Chintalapati, and C. R. Chang, Prospects of spintronics based on 2D materials, WIRES Comput. Mol. Sci. 7(5), e1313 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Q. Xu, N. Wei, Y. P. Zheng, Z. Y. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2012)CrossRefGoogle Scholar
  11. 11.
    F. Rao, Z. Wang, B. Xu, L. Chen, and C. Ouyang, Firstprinciples study of lithium and sodium atoms intercalation in fluorinated graphite, Engineering 1(2), 243 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    G. Liu, X. L. Lei, M. S. Wu, B. Xu, and C. Y. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: A first principles investigation, J. Phys.: Condens. Matter 26(35), 355007 (2014)Google Scholar
  14. 14.
    A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev. 47(16), 6370 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y. Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H. J. Gao, Stable silicene in graphene/silicene van der Waals heterostructures, Adv. Mater. 30(49), 1804650 (2018)CrossRefGoogle Scholar
  16. 16.
    G. Liu, S. B. Liu, B. Xu, C. Y. Ouyang, H. Y. Song, S. Guan, and S. A. Yang, Multiple Dirac points and hydrogenation-induced magnetism of germanene layer on Al(111) surface, J. Phys. Chem. Lett. 6(24), 4936 (2015)CrossRefGoogle Scholar
  17. 17.
    X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Q. Cai, Z. Q. Bai, H. Pan, Y. P. Feng, B. I. Yakobson, and Y. W. Zhang, Constructing metallic nanoroads on a MoS(2) monolayer via hydrogenation, Nanoscale 6(3), 1691 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Pei, J. Yang, R. Xu, Y. H. Zeng, Y. W. Myint, S. Zhang, J. C. Zheng, Q. Qin, X. Wang, W. Jiang, and Y. Lu, Exciton and trion dynamics in bilayer MoS2, Small 11(48), 6384 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lu, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, Excited state biexcitons in atomically thin MoSe2, ACS Nano 11(7), 7468 (2017)CrossRefGoogle Scholar
  22. 22.
    C. Shang, B. Xu, X. Lei, S. Yu, D. Chen, M. Wu, B. Sun, G. Liu, and C. Ouyang, Bandgap tuning in MoSSe bilayers: Synergistic effects of dipole moment and interlayer distance, Phys. Chem. Chem. Phys. 20(32), 20919 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Twodimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7(1), 13352 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, and K. Wu, Experimental realization of honeycomb borophene, Sci. Bull. (Beijing) 63(5), 282 (2018)CrossRefGoogle Scholar
  28. 28.
    B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)CrossRefGoogle Scholar
  29. 29.
    E. S. Penev, A. Kutana, and B. I. Yakobson, Can twodimensional boron superconduct? Nano Lett. 16(4), 2522 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S. G. Xu, Y. J. Zhao, J. H. Liao, X. B. Yang, and H. Xu, The nucleation and growth of borophene on the Ag(111) surface, Nano Res. 9(9), 2616 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Lopez-Bezanilla and P.B. Littlewood, Electronic properties of 8–Pmmn borophene, Phys. Rev. B 93, 241405(R) (2016)ADSCrossRefGoogle Scholar
  32. 32.
    B. Peng, H. Zhang, H. Z. Shao, Y. F. Xu, R. J. Zhang, and H. Y. Zhu, Electronic, optical, and thermodynamic properties of borophene from first-principle calculations, J. Mater. Chem. C 4(16), 3592 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, Physically founded phonon dispersions of few-layer materials and the case of borophene, Mater. Res. Lett. 4(4), 204 (2016)CrossRefGoogle Scholar
  34. 34.
    H. F. Wang, Q. F. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    R. C. Xiao, D. F. Shao, W. J. Lu, H. Y. Lv, J. Y. Li, and Y. P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction, Appl. Phys. Lett. 109(12), 122604 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Y. X. Liu, Y. J. Dong, Z. Y. Tang, X. F. Wang, L. Wang, T. J. Hou, H. P. Lin, and Y. Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations, J. Mater. Chem. C 4(26), 6380 (2016)CrossRefGoogle Scholar
  38. 38.
    X. B. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties, Phys. Rev. B 77, 041402(R) (2008)ADSCrossRefGoogle Scholar
  39. 39.
    A. D. Zabolotskiy and Y. E. Lozovik, Strain-induced pseudomagnetic field in Dirac semimetal borophene, Phys. Rev. B 94(16), 165403 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J. H. Yuan, L. W. Zhang, and K. M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons, RSC Advances 5(91), 74399 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    X. M. Zhang, J. P. Hu, Y. C. Cheng, H. Y. Yang, Y. G. Yao, and S. Y. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)CrossRefGoogle Scholar
  43. 43.
    H. Shu, F. Li, P. Liang, and X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface, Nanoscale 8(36), 16284 (2016)CrossRefGoogle Scholar
  44. 44.
    X. Liu, Z. Zhang, L. Wang, B. I. Yakobson, and M. C. Hersam, Intermixing and periodic self-assembly of borophene line defects, Nat. Mater. 17(9), 783 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)CrossRefGoogle Scholar
  46. 46.
    Z. Pang, X. Qian, Y. Wei, and R. Yang, Super-stretchable borophene, EPL 116(3), 36001 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Y. An, J. Jiao, Y. Hou, H. Wang, R. Wu, C. Liu, X. Chen, T. Wang, and K. Wang, Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers, J. Phys.: Condens. Matter 31, 065301 (2019)Google Scholar
  48. 48.
    X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21, 617 (2019)CrossRefGoogle Scholar
  49. 49.
    H. Cui, X. Zhang, and D. Chen, Borophene: A promising adsorbent material with strong ability and capacity for SO2 adsorption, Appl. Phys. A 124, 636 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    L. Kong, K. Wu, and L. Chen, Recent progress on borophene: Growth and structures, Front. Phys. 13(3), 138105 (2018)CrossRefGoogle Scholar
  51. 51.
    A. Lherbier, A. R. Botello-Méndez, and J.C. Charlier, Electronic and optical properties of pristine and oxidized borophene, 2D Materials 3, 045006 (2016)CrossRefGoogle Scholar
  52. 52.
    E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Z. H. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Zhao, S. Zeng, and J. Ni, Superconductivity in twodimensional boron allotropes, Phys. Rev. B 93, 014502 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    X. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B 77, 041402 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional materials: Polyphony in B flat, Nat. Chem. 8(6), 525 (2016)CrossRefGoogle Scholar
  57. 57.
    T. Tsafack and B. I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers, Phys. Rev. B 93, 165434 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)CrossRefGoogle Scholar
  60. 60.
    F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Zhao, S. Zeng, and J. Ni, Phonon-mediated superconductivity in borophenes, Appl. Phys. Lett. 108(24), 242601 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Z. H. Zhang, Y. Yang, G. Y. Gao, and B. I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)CrossRefGoogle Scholar
  63. 63.
    R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    A. Bhattacharya, S. Bhattacharya, and G. P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet, Phys. Rev. B 84(7), 075454 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    Y. Jiao, F. Ma, J. Bell, A. Bilic, and A. Du, Twodimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties, Angew. Chem. Int. Ed. 55(35), 10292 (2016)CrossRefGoogle Scholar
  67. 67.
    L. C. Xu, A. Du, and L. Kou, Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity, Phys. Chem. Chem. Phys. 18(39), 27284 (2016)CrossRefGoogle Scholar
  68. 68.
    Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys. 18(46), 31424 (2016)CrossRefGoogle Scholar
  69. 69.
    G. I. Giannopoulos, Mechanical behavior of planar borophenes: A molecular mechanics study, Comput. Mater. Sci. 129, 304 (2017)CrossRefGoogle Scholar
  70. 70.
    B. Mortazavi, O. Rahaman, A. Dianat, and T. Rabczuk, Mechanical responses of borophene sheets: A firstprinciples study, Phys. Chem. Chem. Phys. 18(39), 27405 (2016)CrossRefGoogle Scholar
  71. 71.
    Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, and S. De, Mechanical properties and stabilities of alpha-boron monolayers, Phys. Chem. Chem. Phys. 17(3), 2160 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Q. Le, B. Mortazavi, and T. Rabczuk, Mechanical properties of borophene films: A reactive molecular dynamics investigation, Nanotechnology 27(44), 445709 (2016)CrossRefGoogle Scholar
  73. 73.
    L. Shao, Y. Li, Q. Yuan, M. Li, Y. Du, F. Zeng, P. Ding, and H. Ye, Effects of strain on mechanical and electronic properties of borophene, Mater. Res. Express 4(4), 045020 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    R. Peköz, M. Konuk, M. E. Kilic, and E. Durgun, Twodimensional fluorinated boron sheets: Mechanical, electronic, and thermal properties, ACS Omega 3(2), 1815 (2018)CrossRefGoogle Scholar
  75. 75.
    Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104(25), 251915 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    Y. P. Zhou and J. W. Jiang, Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential, Sci. Rep. 7(1), 45516 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    W. C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Y. Liu, and M. S. Miao, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene, J. Phys. Chem. Lett. 8(12), 2647 (2017)CrossRefGoogle Scholar
  78. 78.
    H. Zhong, K. Huang, G. Yu, and S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98(5), 054104 (2018)ADSCrossRefGoogle Scholar
  79. 79.
    Z. Q. Wang, H. Cheng, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, A super-stretchable boron nanoribbon network, Phys. Chem. Chem. Phys. 20(24), 16510 (2018)CrossRefGoogle Scholar
  80. 80.
    Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations, Sci. Rep. 7(1), 609 (2017)ADSCrossRefGoogle Scholar
  81. 81.
    R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    X. D. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene: Ab initiocalculations to continuum description, Phys. Rev. B 80(20), 205407 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    J. Yuan, N. Yu, K. Xue, and X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene, RSC Advances 7(14), 8654 (2017)CrossRefGoogle Scholar
  84. 84.
    Q. Peng, C. Liang, W. Ji, and S. De, A first-principles study of the mechanical properties of g-GeC, Mech. Mater. 64, 135 (2013)CrossRefGoogle Scholar
  85. 85.
    B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, and T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E 87, 228 (2017)ADSCrossRefGoogle Scholar
  86. 86.
    D. F. Li, J. He, G. Q. Ding, Q. Q. Tang, Y. Ying, J. J. He, C. Y. Zhong, Y. Liu, C. B. Feng, Q. L. Sun, H. B. Zhou, P. Zhou, and G. Zhang, Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission, Adv. Funct. Mater. 28(31), 1801685 (2018)CrossRefGoogle Scholar
  87. 87.
    B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C. V. Singh, T. Rabczuk, and L. F. C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties, Nanoscale 10(8), 3759 (2018)CrossRefGoogle Scholar
  88. 88.
    H. B. Zhou, Y. Q. Cai, G. Zhang, and Y. W. Zhang, Superior lattice thermal conductance of single-layer borophene, npj 2D Mater. Appl. 1, 14 (2017)ADSCrossRefGoogle Scholar
  89. 89.
    G. Liu, H. Wang, Y. Gao, J. Zhou, and H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations, Phys. Chem. Chem. Phys. 19(4), 2843 (2017)CrossRefGoogle Scholar
  90. 90.
    H. Sun, Q. Li, and X. G. Wan, First-principles study of thermal properties of borophene, Phys. Chem. Chem. Phys. 18(22), 14927 (2016)CrossRefGoogle Scholar
  91. 91.
    B. Mortazavi, M. Q. Le, T. Rabczuk, and L. F. C. Pereira, Anomalous strain effect on the thermal conductivity of borophene: A reactive molecular dynamics study, Physica E 93, 202 (2017)ADSCrossRefGoogle Scholar
  92. 92.
    H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, and J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7(1), 45986 (2017)ADSCrossRefGoogle Scholar
  93. 93.
    X. Gu and R. Yang, First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene, J. Appl. Phys. 117(2), 025102 (2015)ADSCrossRefGoogle Scholar
  94. 94.
    G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)CrossRefGoogle Scholar
  95. 95.
    H. J. Yan, Z. Q. Wang, B. Xu, and C. Y. Ouyang, Strain induced enhanced migration of polaron and lithium ion in l-MnO2, Funct. Mater. Lett. (Singap.) 5(04), 1250037 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    Z. Q. Wang, M. S. Wu, G. Liu, X. L. Lei, X. Bo, and C. Y. Ouyang, Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations, Int. J. Electrochem. Sci. 9, 562 (2014)Google Scholar
  97. 97.
    T. Y. Lü, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)CrossRefGoogle Scholar
  98. 98.
    V. Shukla, A. Grigoriev, N. K. Jena, and R. Ahuja, Strain controlled electronic and transport anisotropies in twodimensional borophene sheets, Phys. Chem. Chem. Phys. 20(35), 22952 (2018)CrossRefGoogle Scholar
  99. 99.
    Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Band structure engineering of borophane by first principles calculations, RSC Advances 7(75), 47746 (2017)CrossRefGoogle Scholar
  100. 100.
    B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C 4, 3592 (2016)CrossRefGoogle Scholar
  101. 101.
    J. H. Liao, Y. C. Zhao, Y. J. Zhao, H. Xu, and X. B. Yang, Phonon-mediated superconductivity in Mg intercalated bilayer borophenes, Phys. Chem. Chem. Phys. 19(43), 29237 (2017)CrossRefGoogle Scholar
  102. 102.
    M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95, 024505 (2017)ADSCrossRefGoogle Scholar
  103. 103.
    H. L. Li, L. Jing, W. W. Liu, J. J. Lin, R. Y. Tay, S. H. Tsang, and E. H. T. Teo, Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance, ACS Nano 12(2), 1262 (2018)CrossRefGoogle Scholar
  104. 104.
    G. Li, Y. Zhao, S. Zeng, M. Zulfiqar, and J. Ni, Strain effect on the superconductivity in borophenes, J. Phys. Chem. C 122(29), 16916 (2018)CrossRefGoogle Scholar
  105. 105.
    C. Cheng, J. T. Sun, H. Liu, H. X. Fu, J. Zhang, X. R. Chen, and S. Meng, Suppressed superconductivity in substrate-supported β 12 borophene by tensile strain and electron doping, 2D Materials 4, 025032 (2017)CrossRefGoogle Scholar
  106. 106.
    J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)ADSCrossRefGoogle Scholar
  107. 107.
    H. R. Jiang, Z. Lu, M. C. Wu, F. Ciucci, and T. S. Zhao, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy 23, 97 (2016)CrossRefGoogle Scholar
  108. 108.
    G. A. Tritsaris, E. Kaxiras, S. Meng, and E. Wang, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5), 2258 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    Q. F. Li, C. G. Duan, X. G. Wan, and J. L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus, J. Phys. Chem. C 119(16), 8662 (2015)CrossRefGoogle Scholar
  110. 110.
    Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries, J. Phys. Chem. C 117(48), 25409 (2013)CrossRefGoogle Scholar
  111. 111.
    Q. Tang, Z. Zhou, and P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)CrossRefGoogle Scholar
  112. 112.
    B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsässer, Lithium diffusion in the spinel phase Li4Ti5O12 and in the rock salt phase Li7Ti5O12 of lithium titanate from first principles, Phys. Rev. B 89, 174301 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    Z. Q. Wang, Y. C. Chen, and C. Y. Ouyang, Polaron states and migration in F-doped Li2MnO3, Phys. Lett. A 378(32–33), 2449 (2014)ADSCrossRefGoogle Scholar
  114. 114.
    Z. Q. Wang, M. S. Wu, B. Xu, and C. Y. Ouyang, Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping, J. Alloys Compd. 658, 818 (2016)CrossRefGoogle Scholar
  115. 115.
    J. Liu, C. Zhang, L. Xu, and S. Ju, Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT, RSC Advances 8(32), 17773 (2018)CrossRefGoogle Scholar
  116. 116.
    X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, and S. A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)CrossRefGoogle Scholar
  117. 117.
    L. Shi, T. Zhao, A. Xu, and J. Xu, Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries, Sci. Bull. (Beijing) 61(14), 1138 (2016)CrossRefGoogle Scholar
  118. 118.
    S. Banerjee, G. Periyasamy, and S. K. Pati, Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study, J. Mater. Chem. A 2(11), 3856 (2014)CrossRefGoogle Scholar
  119. 119.
    D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, and R. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 5(5), 2328 (2017)CrossRefGoogle Scholar
  120. 120.
    N. Jiang, B. Li, F. Ning, and D. Xia, All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem. 27(6), 1651 (2018)CrossRefGoogle Scholar
  121. 121.
    P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, and X. Du, Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152 (2017)CrossRefGoogle Scholar
  122. 122.
    B. Mortazavi, O. Rahaman, S. Ahzi, and T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Liion batteries with ultra high capacities: A first-principles study, Appl. Mater. Today 8, 60 (2017)CrossRefGoogle Scholar
  123. 123.
    Y. Zhang, Z. F. Wu, P. F. Gao, S. L. Zhang, and Y. H. Wen, Could borophene be used as a promising anode material for high-performance lithium ion battery? ACS Appl. Mater. Interfaces 8(34), 22175 (2016)CrossRefGoogle Scholar
  124. 124.
    J. Liu, L. Zhang, and L. Xu, Theoretical prediction of borophene monolayer as anode materials for highperformance lithium-ion batteries, Ionics (2017)Google Scholar
  125. 125.
    H. Chen, W. Zhang, X. Q. Tang, Y. H. Ding, J. R. Yin, Y. Jiang, P. Zhang, and H. B. Jin, First principles study of P-doped borophene as anode materials for lithium ion batteries, Appl. Surf. Sci. 427, 198 (2018)ADSCrossRefGoogle Scholar
  126. 126.
    N. K. Jena, R. B. Araujo, V. Shukla, and R. Ahuja, Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)CrossRefGoogle Scholar
  127. 127.
    F. Li, Y. Su, and J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries, Phys. Chem. Chem. Phys. 18(36), 25241 (2016)CrossRefGoogle Scholar
  128. 128.
    L. Zhang, P. Liang, H. B. Shu, X. L. Man, F. Li, J. Huang, Q. M. Dong, and D. L. Chao, Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity, J. Phys. Chem. C 121(29), 15549 (2017)CrossRefGoogle Scholar
  129. 129.
    H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)CrossRefGoogle Scholar
  130. 130.
    F. Li and J. J. Zhao, Atomic sulfur anchored on silicene, phosphorene, and borophene for excellent cycle performance of Li-S batteries, ACS Appl. Mater. Interfaces 9(49), 42836 (2017)CrossRefGoogle Scholar
  131. 131.
    H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: A firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)CrossRefGoogle Scholar
  132. 132.
    S. P. Jand, Y. X. Chen, and P. Kaghazchi, Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene, J. Power Sources 308, 166 (2016)ADSCrossRefGoogle Scholar
  133. 133.
    J. Zhao, Y. Yang, R. S. Katiyar, and Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study, J. Mater. Chem. A 4(16), 6124 (2016)CrossRefGoogle Scholar
  134. 134.
    S. Er, G. A. de Wijs, and G. Brocks, DFT study of planar boron sheets: A new template for hydrogen storage, J. Phys. Chem. C 113(43), 18962 (2009)CrossRefGoogle Scholar
  135. 135.
    L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, and X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation, Appl. Surf. Sci. 434, 843 (2018)ADSCrossRefGoogle Scholar
  136. 136.
    L. Li, H. Zhang, and X. Cheng, The high hydrogen storage capacities of Li-decorated borophene, Comput. Mater. Sci. 137, 119 (2017)CrossRefGoogle Scholar
  137. 137.
    X. Chen, L. Wang, W. Zhang, J. Zhang, and Y. Yuan, Cadecorated borophene as potential candidates for hydrogen storage: A first-principle study, Int. J. Hydrogen Energy 42(31), 20036 (2017)CrossRefGoogle Scholar
  138. 138.
    J. Wang, Y. Du, and L. Sun, Ca-decorated novel boron sheet: A potential hydrogen storage medium, Int. J. Hydrogen Energy 41(10), 5276 (2016)CrossRefGoogle Scholar
  139. 139.
    S. Haldar, S. Mukherjee, and C. V. Singh, Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study, RSC Advances 8(37), 20748 (2018)CrossRefGoogle Scholar
  140. 140.
    F. Zhang, R. Chen, W. Zhang, and W. Zhang, A Tidecorated boron monolayer: A promising material for hydrogen storage, RSC Advances 6(16), 12925 (2016)CrossRefGoogle Scholar
  141. 141.
    X. Tang, Y. Gu, and L. Kou, Theoretical investigation of calcium-decorated b 12 boron sheet for hydrogen storage, Chem. Phys. Lett. 695, 211 (2018)ADSCrossRefGoogle Scholar
  142. 142.
    T. A. Abtew, B. C. Shih, P. Dev, V. H. Crespi, and P. H. Zhang, Prediction of a multicenter-bonded solid boron hydride for hydrogen storage, Phys. Rev. B 83(9), 094108 (2011)ADSCrossRefGoogle Scholar
  143. 143.
    Y. S. Wang, F. Wang, M. Li, B. Xu, Q. Sun, and Y. Jia, Theoretical prediction of hydrogen storage on Li decorated planar boron sheets, Appl. Surf. Sci. 258(22), 8874 (2012)ADSCrossRefGoogle Scholar
  144. 144.
    J. L. Li, H. Y. Zhang, and G. W. Yang, Ultrahighcapacity molecular hydrogen storage of a lithiumdecorated boron monolayer, J. Phys. Chem. C 119(34), 19681 (2015)CrossRefGoogle Scholar
  145. 145.
    I. Cabria, M. J. López, and J. A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)ADSCrossRefGoogle Scholar
  146. 146.
    A. Lebon, R. H. Aguilera-del-Toro, L. J. Gallego, and A. Vega, Li-decorated Pmmn8 phase of borophene for hydrogen storage: A van der Waals corrected densityfunctional theory study, Int. J. Hydrogen Energy 44(2), 1021 (2019)CrossRefGoogle Scholar
  147. 147.
    T. Liu, Y. Chen, H. Wang, M. Zhang, L. Yuan, and C. Zhang, Li-decorated β 12-borophene as potential candidates for hydrogen storage: a first-principle study, Materials (Basel) 10(12), 1399 (2017)ADSCrossRefGoogle Scholar
  148. 148.
    Y. F. Zhang and X. L. Cheng, Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation, Physica E 107, 170 (2019)ADSCrossRefGoogle Scholar
  149. 149.
    C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Highcapacity hydrogen storage by metallized graphene, Appl. Phys. Lett. 93(4), 043123 (2008)ADSCrossRefGoogle Scholar
  150. 150.
    B. Xu, X. L. Lei, G. Liu, M. S. Wu, and C. Y. Ouyang, Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations, Int. J. Hydrogen Energy 39(30), 17104 (2014)CrossRefGoogle Scholar
  151. 151.
    F. Li, C. W. Zhang, H. X. Luan, and P. J. Wang, Firstprinciples study of hydrogen storage on Li-decorated silicene, J. Nanopart. Res. 15(10), 1972 (2013)ADSCrossRefGoogle Scholar
  152. 152.
    X. L. Lei, G. Liu, M. S. Wu, B. Xu, C. Y. Ouyang, and B. C. Pan, Hydrogen storage on calcium-decorated BC7 sheet: A first-principles study, Int. J. Hydrogen Energy 39(5), 2142 (2014)CrossRefGoogle Scholar
  153. 153.
    C. Zhang, S. Tang, M. Deng, and Y. Du, Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage, Chin. Phys. B 27(6), 066103 (2018)ADSCrossRefGoogle Scholar
  154. 154.
    M. Moradi, and N. Naderi, First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet, Struct. Chem. 25(4), 1289 (2014)CrossRefGoogle Scholar
  155. 155.
    L. Shi, C. Ling, Y. Ouyang, and J. Wang, High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction, Nanoscale 9(2), 533 (2017)CrossRefGoogle Scholar
  156. 156.
    S. H. Mir, S. Chakraborty, P. C. Jha, J. Wärnå, H. Soni, P. K. Jha, and R. Ahuja, Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction, Appl. Phys. Lett. 109(5), 053903 (2016)ADSCrossRefGoogle Scholar
  157. 157.
    J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)CrossRefGoogle Scholar
  158. 158.
    C. W. Liu, Z. X. Dai, J. Zhang, Y. G. Jin, D. S. Li, and C. H. Sun, Two-dimensional boron sheets as metalfree catalysts for hydrogen evolution reaction, J. Phys. Chem. C 122(33), 19051 (2018)CrossRefGoogle Scholar
  159. 159.
    H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 56(20), 5575 (2017)CrossRefGoogle Scholar
  160. 160.
    Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, and X. Zou, Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction, J. Am. Chem. Soc. 139(36), 12370 (2017)CrossRefGoogle Scholar
  161. 161.
    P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, and X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci. 7(8), 2624 (2014)CrossRefGoogle Scholar
  162. 162.
    Y. Singh, S. Back, and Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts, Phys. Chem. Chem. Phys. 20(32), 21095 (2018)CrossRefGoogle Scholar
  163. 163.
    J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319(1–3), 178 (2005)CrossRefGoogle Scholar
  164. 164.
    X. Tan, H. A. Tahini, and S. C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture, ACS Appl. Mater. Interfaces 9(23), 19825 (2017)CrossRefGoogle Scholar
  165. 165.
    T. B. Tai and M. T. Nguyen, Interaction mechanism of CO2 ambient adsorption on transition-metal-coated boron sheets, Chemistry 19(9), 2942 (2013)CrossRefGoogle Scholar
  166. 166.
    H. Shen, Y. Li, and Q. Sun, Cu atomic chains supported on b-borophene sheets for effective CO2 electroreduction, Nanoscale 10(23), 11064 (2018)CrossRefGoogle Scholar
  167. 167.
    V. Nagarajan and R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol–A first-principles study, Comput. Theor. Chem. 1105, 52 (2017)CrossRefGoogle Scholar
  168. 168.
    A. Shahbazi Kootenaei and G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. A 380(34), 2664 (2016)ADSCrossRefGoogle Scholar
  169. 169.
    A. Omidvar, Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection, Comput. Theor. Chem. 1115, 179 (2017)CrossRefGoogle Scholar
  170. 170.
    R. Chandiramouli and V. Nagarajan, Borospherene nanostructure as CO and NO sensor–A first-principles study, Vacuum 142, 13 (2017)ADSCrossRefGoogle Scholar
  171. 171.
    V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)CrossRefGoogle Scholar
  172. 172.
    R. Y. Guo, T. Li, S. E. Shi, and T. H. Li, Oxygen defects formation and optical identification in monolayer borophene, Mater. Chem. Phys. 198, 346 (2017)CrossRefGoogle Scholar
  173. 173.
    Q. Li, Q. Zhou, X. Niu, Y. Zhao, Q. Chen, and J. Wang, Covalent functionalization of black phosphorus from firstprinciples, J. Phys. Chem. Lett. 7(22), 4540 (2016)CrossRefGoogle Scholar
  174. 174.
    Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient DevicesXiamen UniversityXiamenChina
  2. 2.Department of PhysicsNational University of SingaporeSingaporeSingapore
  3. 3.Institute of Artificial IntelligenceXiamen University MalaysiaSepang, SelangorMalaysia
  4. 4.Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryXiamen UniversityXiamenChina

Personalised recommendations