Advertisement

Frontiers of Physics

, 14:41501 | Cite as

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction

  • Xiao-Dong Wu
  • Yi-Jun WangEmail author
  • Hai Zhong
  • Qin Liao
  • Ying GuoEmail author
Letter
  • 9 Downloads

Abstract

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution (CVQKD) protocol can effectively solve the security loopholes associated with transmitting local oscillator (LO). However, this protocol has larger excess noise compared with one-way Gaussian-modulated coherent-states scheme, which limits the maximal transmission distance to a certain degree. In this paper, we show a reliable solution for this problem by employing non-Gaussian operation, especially, photon subtraction operation, which provides a way to improve the performance of plug-and-play dual-phase-modulated CVQKD protocol. The photon subtraction operation shows experimental feasibility in the plug-andplay configuration since it can be implemented under current technology. Security results indicate that the photon subtraction operation can evidently enhance the maximal transmission distance of the plug-and-play dual-phase-modulated CVQKD protocol, which effectively makes up the drawback of the original one. Furthermore, we achieve the tighter bound of the transmission distance by considering the finite-size effect, which is more practical compared with that achieved in the asymptotic limit.

Keywords

plug-and-play dual-phase-modulated continuous variable quantum key distribution photon subtraction 

References

  1. 1.
    H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)ADSGoogle Scholar
  2. 2.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)ADSzbMATHGoogle Scholar
  3. 3.
    V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)ADSGoogle Scholar
  4. 4.
    C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)ADSGoogle Scholar
  5. 5.
    W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)ADSzbMATHGoogle Scholar
  6. 6.
    H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)ADSGoogle Scholar
  7. 7.
    M. Gessner, L. Pezzè, and A. Smerzi, Efficient entanglement criteria for discrete, continuous, and hybrid variables, Phys. Rev. A 94(2), 020101 (2016)ADSGoogle Scholar
  8. 8.
    S. Takeda, M. Fuwa, P. van Loock, and A. Furusawa, Entanglement swapping between discrete and continuous variables, Phys. Rev. Lett. 114(10), 100501 (2015)ADSGoogle Scholar
  9. 9.
    X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)ADSGoogle Scholar
  10. 10.
    D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, Continuous-variable quantum key distribution with 1 Mbps secure key rate, Opt. Express 23(13), 17511 (2015)ADSGoogle Scholar
  11. 11.
    D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)ADSGoogle Scholar
  12. 12.
    S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)ADSGoogle Scholar
  13. 13.
    D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett. 41(15), 3511 (2016)ADSGoogle Scholar
  14. 14.
    R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481 (2007)Google Scholar
  15. 15.
    C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entangled quantum key distribution over two free-space optical links, Opt. Express 16(21), 16840 (2008)ADSGoogle Scholar
  16. 16.
    Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits, npj Quantum Inform. 3(1), 25 (2017)ADSGoogle Scholar
  17. 17.
    J. Fang, P. Huang, and G. Zeng, Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation, Phys. Rev. A 89(2), 022315 (2014)ADSGoogle Scholar
  18. 18.
    F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)ADSGoogle Scholar
  19. 19.
    P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)ADSGoogle Scholar
  20. 20.
    Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction, Phys. Rev. A 95(3), 032304 (2017)ADSGoogle Scholar
  21. 21.
    P. Jouguet, S. Kunzjacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)ADSGoogle Scholar
  22. 22.
    A. Leverrier and P. Grangier, Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation, Phys. Rev. Lett. 102(18), 180504 (2009)ADSGoogle Scholar
  23. 23.
    A. Leverrier and P. Grangier, Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation, Phys. Rev. A 83(4), 042312 (2011)ADSGoogle Scholar
  24. 24.
    F. Grosshans, Collective attacks and unconditional security in continuous variable quantum key distribution, Phys. Rev. Lett. 94(2), 020504 (2005)ADSGoogle Scholar
  25. 25.
    M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)ADSGoogle Scholar
  26. 26.
    F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)ADSGoogle Scholar
  27. 27.
    A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)ADSGoogle Scholar
  28. 28.
    A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)ADSGoogle Scholar
  29. 29.
    B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)ADSGoogle Scholar
  30. 30.
    X. Q. Dinh, Z. Zhang, and P. L. Voss, A 24 km fiber-based discretely signaled continuous variable quantum key distribution system, Opt. Express 17(26), 24244 (2009)ADSGoogle Scholar
  31. 31.
    J. Lodewyck, M. Bloch, R. Garc’ıa-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuiss-chert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Quantum key distribution over 25 km with an all-fiber continuous-variable system, Phys. Rev. A 76(4), 042305 (2007)ADSGoogle Scholar
  32. 32.
    J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)ADSGoogle Scholar
  33. 33.
    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey- distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)ADSGoogle Scholar
  34. 34.
    H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, Emerging Technologies in Security and Defence, and Quantum Security II, and Unmanned Sensor Systems X, 88990N (2013)Google Scholar
  35. 35.
    X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)ADSGoogle Scholar
  36. 36.
    D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)ADSGoogle Scholar
  37. 37.
    B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)Google Scholar
  38. 38.
    D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)Google Scholar
  39. 39.
    J. Trapani, B. Teklu, S. Olivares, and M. G. Paris, Quantum phase communication channels in the presence of static and dynamical phase diffusion, Phys. Rev. A 92(1), 012317 (2015)ADSGoogle Scholar
  40. 40.
    B. Teklu, J. Trapani, S. Olivares, and M. G. Paris, Noisy quantum phase communication channels, Phys. Scr. 90(7), 074027 (2015)ADSGoogle Scholar
  41. 41.
    Y. Y. Jin, S. X. Qin, H. Zu, L. Zhou, W. Zhong, and Y. B. Sheng, Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13(5), 130321 (2018)Google Scholar
  42. 42.
    M. Legre, H. Zbinden, and N. Gisin, Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration, Quantum Inf. Comput. 6, 326 (2006)zbMATHGoogle Scholar
  43. 43.
    N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Trojan-horse attacks on quantum-key-distribution systems, Phys. Rev. A 73(2), 022320 (2006)ADSGoogle Scholar
  44. 44.
    N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, Trojan-horse attacks threaten the security of practical quantum cryptography, New J. Phys. 16(12), 123030 (2014)ADSMathSciNetGoogle Scholar
  45. 45.
    D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol, Phys. Rev. A 94(3), 032305 (2016)ADSGoogle Scholar
  46. 46.
    P. Huang, G. He, J. Fang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A 87(1), 012317 (2013)ADSGoogle Scholar
  47. 47.
    C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)Google Scholar
  48. 48.
    Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution, Phys. Rev. A 93(1), 012310 (2016)ADSGoogle Scholar
  49. 49.
    S. Zhang, Y. Dong, X. Zou, B. Shi, and G. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)ADSGoogle Scholar
  50. 50.
    X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)Google Scholar
  51. 51.
    R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97(19), 190503 (2006)ADSGoogle Scholar
  52. 52.
    Y. Shen, X. Peng, J. Yang, and H. Guo, Continuousvariable quantum key distribution with Gaussian source noise, Phys. Rev. A 83(5), 052304 (2011)ADSGoogle Scholar
  53. 53.
    K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)Google Scholar
  54. 54.
    M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Single-photon sources and detectors, Rev. Sci. Instrum. 82(7), 071101 (2011)ADSGoogle Scholar
  55. 55.
    A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states, Phys. Rev. A 73(4), 042310 (2006)ADSGoogle Scholar
  56. 56.
    G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65(3), 032314 (2002)ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of AutomationCentral South UniversityChangshaChina

Personalised recommendations