Advertisement

Frontiers of Physics

, 14:21603 | Cite as

Entanglement measures of a new type pseudo-pure state in accelerated frames

  • Qian DongEmail author
  • Ariadna J. Torres-Arenas
  • Guo-Hua Sun
  • Wen-Chao Qiang
  • Shi-Hai Dong
Research Article
  • 7 Downloads

Abstract

In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity \({N_{A{B_I}}}\left( {\rho _{A{B_I}}^{{T_A}}} \right)\) increases with F but decreases with the variable y, while the variation of the negativity \({N_{{B_I}{B_{II}}}}\left( {\rho _{{B_I}{B_{II}}}^{{T_{{B_I}}}}} \right)\) is opposite to that of the negativity \({N_{A{B_I}}}\left( {\rho _{A{B_I}}^{{T_A}}} \right)\). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII ) is independent of it. However, both S(ρABI) and S(ρBIBII ) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.

Keywords

negativity pseudo-pure state noninertial frame entanglement von Neumann entropy concurrence 

Notes

Acknowledgements

We would like to thank the kind referees for invaluable and positive suggestions, which have improved the manuscript greatly. This work was supported by project 20180677- SIP-IPN, COFAA-IPN, Mexico and partially by the CONACYT project under Grant No. 288856-CB-2016.

References

  1. 1.
    P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)Google Scholar
  19. 19.
    S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)Google Scholar
  23. 23.
    R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205, 415, 441CrossRefGoogle Scholar
  24. 24.
    W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)CrossRefGoogle Scholar
  26. 26.
    S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Dong
    • 1
    Email author
  • Ariadna J. Torres-Arenas
    • 1
  • Guo-Hua Sun
    • 2
  • Wen-Chao Qiang
    • 3
  • Shi-Hai Dong
    • 1
  1. 1.Laboratorio de Información Cuántica, CIDETECInstituto Politécnico Nacional, UPALM, CDMXMexicoMexico
  2. 2.Catedrática CONACyT, Centro de Investigación en ComputaciónInstituto Politécnico Nacional, UPALMMexicoMexico
  3. 3.Faculty of ScienceXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations