Advertisement

Frontiers of Physics

, 13:132110 | Cite as

Alpha-clustering effects in heavy nuclei

  • Zhongzhou Ren
  • Bo Zhou
Review Article
  • 28 Downloads
Part of the following topical collections:
  1. Simplicity, Symmetry, and Beauty of Atomic Nuclei

Abstract

The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the α cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+α cluster structure in some nuclei, in particular, the 208Pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the α-clustering effects in heavy nuclei. We also discuss the possible α cluster structure of heavy nuclei from the view of α decay.

Keywords

α cluster structure nuclear cluster model α correlations α decay 

Notes

Acknowledgements

The authors are honoured in dedicating this review paper to the celebration of Professor Akito Arima’s 88th birthday. The authors are grateful for the discussions with Prof. Hisashi Horiuchi, Prof. Akihiro Tohsaki, Prof. Gerd Röpke, Prof. Peter Schuck, Prof. Masaaki Kimura, Prof. Yasuro Funaki, Prof. Chang Xu, and Prof. Taiichi Yamada. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11535004, 11375086, 11120101005, 11175085, 11235001, and 11761161001), the National Major State Basic Research and Development of China, Grant Nos. 2016YFE0129300 and 2018YFA0404403, the Science and Technology Development Fund of Macau under grant No. 008/2017/AFJ, and JSPS KAKENHI Grant No. 17K1426207.

References

  1. 1.
    K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977CrossRefGoogle Scholar
  2. 2.
    H. Horiuchi, K. Ikeda, and Y. Suzuki, Molecule-like structures in nuclear system, Prog. Theor. Phys. Suppl. 52, 89 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meisner, Microscopic clustering in nuclei, arXiv: 170506192 (2017)Google Scholar
  5. 5.
    W. Wefelmeier, Ein geometrisches Modell des Atomkerns, Z. Für Phys. Hadrons Nucl. 107, 332 (1937)CrossRefGoogle Scholar
  6. 6.
    K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei, Prog. Theor. Phys. Suppl. E68, 464 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, et al., Comprehensive study of alpha-nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    M. Freer and H. O. U. Fynbo, The Hoyle state in 12C, Prog. Part. Nucl. Phys. 78, 1 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, et al., Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of alpha-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kanada-En’yo and H. Horiuchi, Clustering in yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, Eur. Phys. J. A 52, 373 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515, 147 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    T. Neff and H. Feldmeier, Cluster structures within fermionic molecular dynamics, Nucl. Phys. A 738, 357 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    C. Beck (Ed.), Clusters in Nuclei, Lecture Notes in Physics, Springer, Heidelberg; New York, 2010Google Scholar
  19. 19.
    B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathing-like excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, et al., Resonance states in 12C and alpha-particle condensation, Eur. Phys. J. A 24, 321 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys. 2012 (2012)Google Scholar
  22. 22.
    T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li, d) reaction, Prog. Theor. Phys. 132, 73 (1998)CrossRefGoogle Scholar
  23. 23.
    T. Sakuda and S. Ohkubo, Microscopic study of coexistence of alpha-cluster and shell-model structure in the 40Ca-44Ti region, Prog. Theor. Phys. 132, 103 (1998)CrossRefGoogle Scholar
  24. 24.
    R. D. Lawson, Theory of the Nuclear Shell Model, Clarendon Press, 1980Google Scholar
  25. 25.
    R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Phys. Rep. 294, 265 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    I. Tonozuka and A. Arima, Surface α-clustering and α-decays of 212Po, Nucl. Phys. A 323, 45 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, et al., Novel manifestation of ensuremath alpha-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Ren, C. Xu, and Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei, Phys. Rev. C 70, 034304 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zhang, W. Rae, and A. Merchant, Systematics of some 3-dimensional alpha-cluster configurations in 4n nuclei from 16O to 44Ti, Nucl. Phys. A 575, 61 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    S. i. Koh, Many-body approach to the alpha-correlation inside of the heavy nuclei, Prog. Theor. Phys. Suppl. 132, 197 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    A. Tohsaki and N. Itagaki, Alpha clustering with a hollow structure: Geometrical structure of alpha clusters from platonic solids to fullerene shape, Phys. Rev. C 97, 011301 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    N. Takigawa and A. Arima, Structure of 12C, Nucl. Phys. A 168, 593 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    K. Ikeda, T. Marumori, R. Tamagaki, and H. Tanaka, Formation of the Viewpoint, Alpha-like four-body correlations and molecular aspects in nuclei, Prog. Theor. Phys. Suppl. 52, 1 (1972)ADSGoogle Scholar
  34. 34.
    Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized molecular dynamics: A new insight into the structure of nuclei, Comp. Rend. Phys. 4, 497 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M. Kimura, Cluster states in stable and unstable nuclei, arXiv: 1612.02086 (2016)Google Scholar
  36. 36.
    T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 20O+α, Prog. Theor. Phys. 53, 706 (1975)ADSCrossRefGoogle Scholar
  37. 37.
    B. Zhou, Z. Ren, C. Xu, Y. Funaki, et al., New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)ADSCrossRefGoogle Scholar
  40. 40.
    A. Arima and S. Yoshida, Alpha-decay widths of 20Ne, Phys. Lett. B 40, 15 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    P. Chattopadhyay and R. M. Dreizler, Numerical aspects of angular momentum projection for rotational nuclei, Nucl. Phys. A 321, 62 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer Science & Business Media, 2004Google Scholar
  44. 44.
    B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, et al., Container structure of alpha-alpha-lambda clusters in 9-lambda-beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)CrossRefGoogle Scholar
  46. 46.
    B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, et al., The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)CrossRefGoogle Scholar
  50. 50.
    S. Ohkubo and K. Umehara, Inversion doublet K π = 0 - band with the alpha+36Ar cluster structure in 40Ca, Prog. Theor. Phys. 80, 598 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi, Clustering and triaxial deformations of 40Ca, Phys. Rev. C 76, 044317 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    T. Yamaya, M. Saitoh, M. Fujiwara, T. Itahashi, K. Katori, T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Cluster structure in 40Ca via the α-transfer reaction, Nucl. Phys. A 573, 154 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    T. Wada and H. Horiuchi, Resonating-group-method study of alpha+40Ca elastic scattering and 44Ti structure, Phys. Rev. C 38, 2063 (1988)ADSCrossRefGoogle Scholar
  54. 54.
    F. Michel, S. Ohkubo, and G. Reidemeister, Local potential approach to the alpha-nucleus interaction and alpha-cluster structure in nuclei, Prog. Theor. Phys. Suppl. 132, 7 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    R. R. Betts, Resonances in heavy ion collisions — Nuclear structure at large deformations, Nucl. Phys. A 447, 257 (1986)ADSCrossRefGoogle Scholar
  57. 57.
    E. Uegaki, Molecular resonances in medium-weight nuclei, Prog. Theor. Phys. 132, 135 (1998)CrossRefGoogle Scholar
  58. 58.
    E. Uegaki and Y. Abe, Resonances in 28Si+28Si.I — dinuclear molecular model with axial asymmetry, Prog. Theor. Phys. 127, 831 (2012)ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    E. Uegaki and Y. Abe, Resonances in 28Si+28Si (II) — Analyses for the angular distributions and angular correlations, Prog. Theor. Phys. 127, 877 (2012)ADSCrossRefzbMATHGoogle Scholar
  60. 60.
    S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Ren and G.-O. Xu, Evidence of alpha correlation from binding energies in medium and heavy nuclei, Phys. Rev. C 38, 1078 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    M. Hasegawa, Alpha-like four-nucleon correlations viewed in single-particle mean field, Prog. Theor. Phys. 132, 177 (1998)CrossRefGoogle Scholar
  63. 63.
    M. Girod and P. Schuck, Alpha-particle clustering from expanding self-conjugate nuclei within the Hartree–Fock–Bogoliubov approach, Phys. Rev. Lett. 111, 132503 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    F. D. Becchetti, L. T. Chua, J. Jänecke, and A. M. VanderMolen, Systematics of the (d, 6Li) Reaction and alpha Clustering in Heavy Nuclei, Phys. Rev. Lett. 34, 225 (1975)ADSCrossRefGoogle Scholar
  65. 65.
    F. D. Becchetti and J. Jänecke, Neutron blocking in alpha-particle-transfer reactions, Phys. Rev. Lett. 35, 268 (1975)ADSCrossRefGoogle Scholar
  66. 66.
    Z. Ren and G.-O. Xu, Reduced alpha transfer rates in a schematic model, Phys. Rev. C 36, 456 (1987)ADSGoogle Scholar
  67. 67.
    B. Buck, J. C. A. C. Merchant, and S. M. Perez, Cluster model of alpha decay and 212Po, Phys. Rev. C 53, 2841 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    C. Xu, Z. Ren, G. Röpke, P. Schuck, et al., alpha-decay width of 212Po from a quartetting wave function approach, Phys. Rev. C 93, 011306 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    C. Xu, G. Röpke, P. Schuck, Z. Ren, et al., Alpha-cluster formation and decay in the quartetting wave function approach, Phys. Rev. C 95, 061306 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    K. Varga, R. G. Lovas, and R. J. Liotta, Absolute alpha decay width of 212Po in a combined shell and cluster model, Phys. Rev. Lett. 69, 37 (1992)ADSCrossRefGoogle Scholar
  71. 71.
    G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Nuclear clusters bound to doubly magic nuclei: The case of 212Po, Phys. Rev. C 90, 034304 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Alpha decay width of 212Po from a quartetting wave function approach, J. Phys. Conf. Ser. 863, 012006 (2017)CrossRefGoogle Scholar
  73. 73.
    Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    D. Brink, The Alpha-Particle Model of Light Nuclei, in International School of Physics Enrico Fermi, Course 37 (in International School of Physics, 1966)Google Scholar
  75. 75.
    D. M. Brink, History of cluster structure in nuclei, J. Phys. Conf. Ser. 111, 012001 (2008)CrossRefGoogle Scholar
  76. 76.
    Y. Akaishi, S. A. Chin, Horiuchi, and K. Ikeda, Cluster Models and Other Topics, World Scientific, 1987CrossRefGoogle Scholar
  77. 77.
    A. Tohsaki and N. Itagaki, Coulomb energy of alphaparticle aggregates distributed on Archimedean solids, Phys. Rev. C 98, 014302 (2018)ADSCrossRefGoogle Scholar
  78. 78.
    A. Tohsaki, New effective internucleon forces in microscopic alpha-cluster model, Phys. Rev. C 49, 1814 (1994)ADSCrossRefGoogle Scholar
  79. 79.
    D. Brink and J. Castro, Alpha clustering effects in nuclear matter, Nucl. Phys. A 216, 109 (1973)ADSCrossRefGoogle Scholar
  80. 80.
    A. Tohsaki-Suzuki, Microscopic study of alpha-cluster matter, Prog. Theor. Phys. 81, 370 (1989)ADSCrossRefGoogle Scholar
  81. 81.
    K. Wei and H. F. Zhang, Cluster preformation law for heavy and superheavy nuclei, Phys. Rev. C 96 (2017)Google Scholar
  82. 82.
    Y. Qian and Z. Ren, New insight into α clustering of heavy nuclei via their α decay, Phys. Lett. B 777, 298 (2018)ADSCrossRefGoogle Scholar
  83. 83.
    D. Ni and Z. Ren, Systematic calculation of α decay within a generalized density-dependent cluster model, Phys. Rev. C 81, 024315 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    D. Ni and Z. Ren, Theoretical description of fine structure in the ensuremath alpha decay of heavy odd-odd nuclei, Phys. Rev. C 87, 027602 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    Y. Qian and Z. Ren, Systematic calculations on exotic α-decay half-lives of nuclei with N = 125, 126, 127, Nucl. Phys. A 852, 82 (2011)CrossRefGoogle Scholar
  86. 86.
    C. Xu and Z. Ren, New deformed model of alpha-decay half-lives with a microscopic potential, Phys. Rev. C 73, 041301 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    A. N. Andreyev, M. Huyse, P. Van Duppen, et al., Signatures of the Z = 82 Shell Closure in alpha Decay Process, Phys. Rev. Lett. 110, 242502 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Institute for International CollaborationHokkaido UniversitySapporoJapan

Personalised recommendations