Frontiers of Physics

, 13:132112 | Cite as

Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou

  • Ming-Ze Sun
  • Xiao-Hong ZhouEmail author
  • Meng WangEmail author
  • Yu-Hu Zhang
  • Yu. A. Litvinov
Review Article
Part of the following topical collections:
  1. Simplicity, Symmetry, and Beauty of Atomic Nuclei


In recent years, extensive short-lived nuclear mass measurements have been carried out at the Heavy- Ion Research Facility (HIRFL) in Lanzhou using Isochronous Mass Spectrometry (IMS). The obtained mass values have been successfully applied to nuclear structure and astrophysics studies. In this contribution, we give a brief introduction to the nuclear mass measurements at HIRFL-CSR facility. Main technical developments are described and recent results are summarized. Furthermore, we envision the future perspective for the next-generation storage ring facility HIAF in Huizhou.


nuclear mass short-lived nuclei storage ring isochronous mass spectrometry 



This review paper is fully dedicated to celebrating Professor Akito Arima’s 88th birthday. We express our sincere thanks to Prof. Akito Arima for promoting the collaboration between China and Japan in nuclear physics over the past decades, and particularly for his support on building the Cooler Storage Ring in Lanzhou, which is now a leading facility in the world for precision mass measurement of short-lived nuclei. This work was supported in part by the National Key R&D Program of China (Grant Nos. 2016YFA0400504 and 2018YFA0404400), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDJ-SSW-S), and the Helmholtz-CAS Joint Research Group HCJRG-108.


  1. 1.
    G. Audi, The history of nuclidic masses and of their evaluation, Int. J. Mass Spectrom. 251, 85 (2006)Google Scholar
  2. 2.
    K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rev. 425, 1 (2006)Google Scholar
  3. 3.
    D. Lunney, J. M. Pearson, and C. Thibault, Recent trends in the determination of nuclear masses, Rev. Mod. Phys. 75, 1021 (2003)ADSGoogle Scholar
  4. 4.
    A. S. Eddington, The internal constitution of the stars, Nature 106, 14 (1920)ADSGoogle Scholar
  5. 5.
    F. W. Aston, A new mass spectrograph and the wholenumber rule, Proc. Roy. Soc. A 115, 487 (1927)ADSGoogle Scholar
  6. 6.
    F. W. Aston, Mass spectra and isotopes, Nobel Lecture, (1922)zbMATHGoogle Scholar
  7. 7.
    G. Gamow, Mass defect curve and nuclear constitution, Proc. Royal Society A 126, 632 (1930)zbMATHGoogle Scholar
  8. 8.
    C. F. von Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96, 431 (1935)ADSzbMATHGoogle Scholar
  9. 9.
    H. A. Bethe and R. F. Bacher, Stationary states of nuclei, Rev. Mod. Phys. 8, 82 (1936)ADSzbMATHGoogle Scholar
  10. 10.
    A. J. Dempster, A new method of positive ray analysis, Phys. Rev. 11, 316 (1918)ADSGoogle Scholar
  11. 11.
    J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, 1964 Atomic mass table, Nucl. Phys. 67, 1 (1965)Google Scholar
  12. 12.
    H. Ewald and H. Hintenberger, Methoden und Anwendungen der Massenspektroskopie, Zeitschrift Naturforschung Teil A 8, 338 (1953)ADSGoogle Scholar
  13. 13.
    F. Everling, L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Relative nuclidic masses, Nucl. Phys. 18, 529 (1960)Google Scholar
  14. 14.
    K. Blaum and Yu. A. Litvinov (Eds.), 100 Years of Mass Spectrometry, Int. J. Mass Spectr. 349–350, 1 (2013)Google Scholar
  15. 15.
    H. Geissel, et al. (Ed.), Encyclopedia of Nuclear Physics and its Applications, 1st Ed., Wiley-VCH, Weinheim, 2013Google Scholar
  16. 16.
    T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)ADSGoogle Scholar
  17. 17.
    J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Phys. Lett. B 717, 371 (2012)ADSGoogle Scholar
  18. 18.
    J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, The limits of the nuclear landscape, Nature(London) 486, 509 (2012)ADSGoogle Scholar
  19. 19.
    X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory, Atomic Data and Nuclear Data Tables 121–122, 1 (2018)Google Scholar
  20. 20.
    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41, 030003 (2017)ADSGoogle Scholar
  21. 21.
    J. Dobaczewski, I. Hamamoto, W. Nazarewicz, and J. A. Sheikh, Nuclear shell structure at particle drip lines, Phys. Rev. Lett. 72, 981 (1994)ADSGoogle Scholar
  22. 22.
    T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Magic numbers in exotic nuclei and spin-isospin properties of the NN Interaction, Phys. Rev. Lett. 87, 082502 (2001)ADSGoogle Scholar
  23. 23.
    L. Satpathy and S. K. Patra, New magic numbers and new islands of stability in drip-line regions in mass model, Nucl. Phys. A 722, C24 (2003)ADSGoogle Scholar
  24. 24.
    D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, et al., Evidence for a new nuclear “magic number” from the level structure of 54Ca, Nature 502, 207 (2013)ADSGoogle Scholar
  25. 25.
    A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N = 16, near the neutron drip line, Phys. Rev. Lett. 84, 5493 (2000)ADSGoogle Scholar
  26. 26.
    R. Kanungo, A new view of nuclear shells, Phys. Scr. T152, 014002 (2013)ADSGoogle Scholar
  27. 27.
    X. Xu, M. Wang, Y.-H. Zhang, H.-S. Xu, P. Shuai, et al., Direct mass measurements of neutron-rich 86Kr projectile fragments and the persistence of neutron magic number N = 32 in Sc isotopes, Chin. Phys. C 39, 106201 (2015)ADSGoogle Scholar
  28. 28.
    E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957)ADSGoogle Scholar
  29. 29.
    H. Schatz, Nuclear masses in astrophysics, International Journal of Mass Spectrometry 349–350, 181 (2013)Google Scholar
  30. 30.
    D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Impact of nuclear mass uncertainties on the γ process, Phys. Rev. Lett. 116, 121101 (2016)ADSGoogle Scholar
  31. 31.
    R. Knöbel, M. Diwisch, H. Geissel, Yu. A. Litvinov, Z. Patyk, et al., New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI, Eur. Phys. J. A 52, 138 (2016)ADSGoogle Scholar
  32. 32.
    K. Blaum, M. Block, R. B. Cakirli, S. Eliseev, M. Kowalska, S. Kreim, Y. A. Litvinov, Sz. Nagy, W. Nortershauser, and D. T. Yordanov, Measurements of groundstate properties for nuclear structure studies by precision mass and laser spectroscopy, J. Phys. Conf. Ser. 312, 092001 (2011)Google Scholar
  33. 33.
    K. Blaum, J. Dilling, and W. Nortershauser, Precision atomic physics techniques for nuclear physics with radioactive beams, Phys. Scr. T152, 014017 (2013)ADSGoogle Scholar
  34. 34.
    B. Franzke, H. Geissel, and G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings, Mass Spec. Rev. 27, 428 (2008)ADSGoogle Scholar
  35. 35.
    P. Egelhof, Y. Litvinov and M. Steck, Proceedings of the 9th International Conference on Nuclear Physics at Storage Rings STORI’14, Phys. Scr. 2015, 010301 (2015)Google Scholar
  36. 36.
    H. Geissel, Yu. A. Litvinov, F. Attallah, K. Beckert, P. Beller, et al., New results with stored exotic nuclei at relativistic energies, Nucl. Phys. A 746, 150c (2004)ADSGoogle Scholar
  37. 37.
    Y. H. Zhang, Y. A. Litvinov, T. Uesaka and H. S. Xu, Storage ring mass spectrometry for nuclear structure and astrophysics research, Phys. Scr. 91, 073002 (2016)ADSGoogle Scholar
  38. 38.
    X. Gao, Y. J. Yuan, J. C. Yang, S. Litvinov, M. Wang, Y. Litvinov, W. Zhang, D. Y. Yin, G. D. Shen, W. P. Chai, J. Shi, and P. Shang, Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe, Nucl. Instr. Meth. in Phys. Res. Sect. A 763, 53 (2014)ADSGoogle Scholar
  39. 39.
    J. W. Xia, W. L. Zhan, B. W. Wei, Y. J. Yuan, M. T. Song, et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou, Nucl. Instr. Meth. in Phys. Res. Sect. A 488, 11 (2002)ADSGoogle Scholar
  40. 40.
    Y. J. Yuan, J. C. Yang, J. W. Xia, P. Yuan, W. M. Qiao, et al., Status of the HIRFL–CSR complex, Nucl. Instrum. Methods Phys. Res. B 317, 214 (2013)ADSGoogle Scholar
  41. 41.
    B. Mei, X. L. Tu, M. Wang, H. S. Xu, R. S. Mao, et al., A high performance time-of-flight detector applied to isochronous mass measurement at CSRe, Nucl. Instrum. Meth. A 624, 109 (2010)ADSGoogle Scholar
  42. 42.
    P. Zhang, X. Xu, P. Shuai, R. J. Chen, X. L. Yan, et al., High-precision QEC values of superallowed 0+ → 0+ β-emitters 46Cr, 50Fe and 54Ni, Phys. Lett. B 767, 20 (2017)ADSGoogle Scholar
  43. 43.
    M. Hausmann, J. Stadlmann, F. Attallah, K. Beckert, P. Beller, et al., Isochronous mass measurements of hot exotic nuclei, Hyperfine Interactions 132, 291 (2001)ADSGoogle Scholar
  44. 44.
    X. L. Tu, M. Wang, Yu. A. Litvinov, Y. H. Zhang, H. S. Xu, et al., Precision isochronous mass measurements at the storage ring CSRe in Lanzhou, Nucl. Instrum. Methods Phys. Res. A 654, 213 (2011)ADSGoogle Scholar
  45. 45.
    B. -H. Sun, H. Geissel, M. Hausmann, C. Kozhuharov, R. Knöbel, Yu. A. Litvinov, J. Meng, Z. Patyk, T. Radon, and C. Scheidenberger, Identification of time-offlight spectra for isochronous mass measurements, Chin. Phys. C 33, 161 (2009)ADSGoogle Scholar
  46. 46.
    Yu. A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, et al., Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRSESR facility, Nucl. Phys. A 756 3 (2005)ADSGoogle Scholar
  47. 47.
    B. Sun, R. Knöbel, Yu. A. Litvinov, H. Geissel, J. Meng, et al., Nuclear structure studies of short-lived neutronrich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility, Nucl. Phys. A 812 1 (2008)ADSGoogle Scholar
  48. 48.
    A. Kankainen, V.-V. Elomaa, T. Eronen, D. Gorelov, J. Hakala, et al., Mass measurements in the vicinity of the doubly magic waiting point 56Ni, Phys. Rev. C 82 034311 (2010)ADSGoogle Scholar
  49. 49.
    X. L. Tu, Mass measurements of short-lived A = 2Z–1 nuclides at HIRFL-CSR, Ph D Thesis, University of Chinese Academy of Sciences, 2011Google Scholar
  50. 50.
    Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, X. L. Tu, X. L. Yan, et al., Mass measurements of the neutrondeficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: First test of the isobaric multiplet mass equation in fp-Shell nuclei, Phys. Rev. Lett. 107, 102501 (2012)ADSGoogle Scholar
  51. 51.
    X. L. Yan, H. S. Xu, Yu. A. Litvinov, Y. H. Zhang, H. Schatz, et al., Mass measurement of 45Cr and its impact on the Ca-Sc cycle in X-ray bursts, Astrophys. J. Letters 766, L8 (2013)ADSGoogle Scholar
  52. 52.
    P. Shuai, H. S. Xu, Y. H. Zhang, Yu. A. Litvinov, M. Wang, et al., Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings, arXiv: 1407.3459 [nucl-ex]Google Scholar
  53. 53.
    X. Xu, P. Zhang, P. Shuai, R. J. Chen, X. L. Yan, et al., Identification of the lowest T = 2, J π = 0+ isobaric analog state in 52Co and its impact on the understanding of β-decay properties of 52Ni, Phys. Rev. Lett. 117, 182503 (2016)ADSGoogle Scholar
  54. 54.
    Y. M. Xing, K. A. Li, Y. H. Zhang, X. H. Zhou, M. Wang, et al., Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes, Phys. Lett. B 781, 358 (2018)ADSGoogle Scholar
  55. 55.
    C. Y. Fu, Y. H. Zhang, X. H. Zhou, M. Wang, Yu. A. Litvinov, et al., Masses of the T z = −3/2 nuclei 27P and 29S, Phys. Rev. C 98, 014315 (2018)ADSGoogle Scholar
  56. 56.
    R. J. Chen, X. L. Yan, W. W. Ge, Y. J. Yuan, M. Wang, et al., A method to measure the transition energy γt of the isochronously tuned storage ring, Nucl. Instrum. Meth. A 898, 111 (2018)ADSGoogle Scholar
  57. 57.
    X. Xu, M. Wang, P. Shuai, R. J. Chen, X. L. Yan, et al., A data analysis method for isochronous mass spectrometry usingtwo time-of-flight detectors at CSRe, Chin. Phys. C 39, 106201 (2015)ADSGoogle Scholar
  58. 58.
    P. Shuai, X. Xu, Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors, Nucl. Instrum. Methods Phys. Res. B 376, 311 (2016)ADSGoogle Scholar
  59. 59.
    W. Zhang, X. L. Tu, M. Wang, Y. H. Zhang, H. S. Xu, et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe, Nucl. Instrum. Meth. A 756, 1 (2014)ADSGoogle Scholar
  60. 60.
    Y. M. Xing, M. Wang, Y. H. Zhang, P. Shuai, X. Xu, et al., First isochronous mass measurements with two time-of-flight detectors at CSRe, Phys. Scr. 2015, 014010 (2015)Google Scholar
  61. 61.
    W. R. Phillips, I. Ahmad, D. W. Banes, B. G. Glagola, W. Henning, W. Kutschera, K. E. Rehm, J. P. Schiffer, and T. F. Wang, Charge-state dependence of nuclear lifetimes, Phys. Rev. Lett. 62, 1025 (1989)ADSGoogle Scholar
  62. 62.
    M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, et al., First observation of bound-state β-decay, Phys. Rev. Lett. 69, 2164 (1992)ADSGoogle Scholar
  63. 63.
    F. Attallah, M. Aiche, J. F. Chemin, J. N. Scheurer, W. E. Meyerhof, J. P. Grandin, P. Aguer, G. Bogaert, J. Kiener, A. Lefebvre, J. P. Thibaud, and C. Grunberg, Charge state blocking of K-shell internal conversion in 125Te, Phys. Rev. Lett. 75, 1715 (1995)ADSGoogle Scholar
  64. 64.
    H. Irnich, H. Geissel, F. Nolden, K. Beckert, F. Bosch, et al., Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring, Phys. Rev. Lett. 75, 4182 (1995)ADSGoogle Scholar
  65. 65.
    F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, et al., Observation of bound-state β-decay of fully ionized 187Re: 187Re-187Os cosmochronometry, Phys. Rev. Lett. 77, 5190 (1996)ADSGoogle Scholar
  66. 66.
    T. Ohtsubo, F. Bosch, H. Geissel, L. Maier, C. Scheidenberger, et al., Simultaneous measurement of β-decay to bound and continuum electron states, Phys. Rev. Lett. 95, 052501 (2005)ADSGoogle Scholar
  67. 67.
    Yu. A. Litvinov, F. Bosch, H. Geissel, J. Kurcewicz, Z. Patyk, et al., Measurement of the β + and orbital electron-capture decay rates in fully ionized, hydrogenlike, and heliumlike 140Pr Ions, Phys. Rev. Lett. 99, 262501 (2007)ADSGoogle Scholar
  68. 68.
    Yu. A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H. G. Essel, et al., Observation of non-exponential orbital electron capture decays of hydrogen-like 140Pr and 142Pm ions, Phys. Lett. B 664, 162 (2008)ADSGoogle Scholar
  69. 69.
    P. Kienle (for the Two-Body-Weak-Decays Collaboration), High-resolution measurement of the timemodulated orbital electron capture and of the β + decay of hydrogen-like 142Pm60+ ions, Phys. Lett. B 726, 638 (2013)ADSGoogle Scholar
  70. 70.
    J. N. Bahcall, Beta decay in stellar interiors, Phys. Rev. 126, 1143 (1962)ADSGoogle Scholar
  71. 71.
    Q. Zeng, M. Wang, X. H. Zhou, Y. H. Zhang, X. L. Tu, et al., Half-life measurement of short-lived 94m 44 Ru44+ using isochronous mass spectrometry, Phys. Rev. C 96, 031303 (2017)ADSGoogle Scholar
  72. 72.
    R. J. Chen, Y. J. Yuan, M. Wang, X. Xu, P. Shuai, et al., Simulations of the isochronous mass spectrometry at the HIRFL-CSR, Phys. Scr. 2015, 014044 (2015)Google Scholar
  73. 73.
    X. C. Chen, Q. Zeng, Yu. A. Litvinov, X. L. Tu, P. M. Walker, M. Wang, Q. Wang, K. Yue, and Y. H. Zhang, Statistical approaches to lifetime measurements with restricted observation times, Phys. Rev. C 96, 034302 (2017)ADSGoogle Scholar
  74. 74.
    X. L. Tu, H. S. Xu, M. Wang, Y. H. Zhang, Yu. A. Litvinov, et al., Direct mass measurements of shortlived A = 2Z–1 nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rp process, Phys. Rev. Lett. 106, 112501 (2011)ADSGoogle Scholar
  75. 75.
    P. Shuai, H. S. Xu, X. L. Tu, Y. H. Zhang, B. H. Sun, et al., Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co, Phys. Lett. B 735, 327 (2014)ADSGoogle Scholar
  76. 76.
    E. P. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51, 106 (1937)ADSzbMATHGoogle Scholar
  77. 77.
    E. P. Wigner, in: Proc. of the R. A. Welch Foundation Conf. on Chemical Research, Houston, edited by W. O. Milligan (R. A. Welch Foundation, Houston, 1957), Vol. 1Google Scholar
  78. 78.
    S. Weinberg and S. B. Treiman, Electromagnetic Corrections to isotopic spin conservation, Phys. Rev. 116, 465 (1959)ADSGoogle Scholar
  79. 79.
    M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, et al., Isobaric multiplet mass equation in the A = 31, T = 3/2 quartets, Phys. Rev. C 93, 064310 (2016)ADSGoogle Scholar
  80. 80.
    M. MacCormick and G. Audi, Evaluated experimental isobaric analogue states from T = 1/2 to T = 3 and associated IMME coefficients, Nucl. Phys. A 925, 61 (2014)ADSGoogle Scholar
  81. 81.
    A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, et al., Breakdown of the isobaric multiplet mass equation for the A = 20 and 21 multiplets, Phys. Rev. Lett. 113, 082501 (2014)ADSGoogle Scholar
  82. 82.
    A. Kankainen, L. Canete, T. Eronen, J. Hakala, A. Jokinen, J. Koponen, I. D. Moore, D. Nesterenko, J. Reinikainen, S. Rinta-Antila, A. Voss, and J. Äystö, Mass of astrophysically relevant 31Cl and the breakdown of the isobaric multiplet mass equation, Phys. Rev. C 93, 041304(R) (2016)ADSGoogle Scholar
  83. 83.
    R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D. J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, and C. S. Sumithrarachchi, Highprecision Penning trap mass measurements of 37,38Ca and their contributions to conserved vector current and isobaric mass multiplet equation, Phys. Rev. C 75, 055503 (2007)ADSGoogle Scholar
  84. 84.
    C. Yazidjian, G. Audi, D. Beck, K. Blaum, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, and L. Schweikhard, Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A = 35, T = 3/2 isospin quartet, Phys. Rev. C 76, 024308 (2007)ADSGoogle Scholar
  85. 85.
    A. Saastamoinen, T. Eronen, A. Jokinen, V.-V. Elomaa, J. Hakala, A. Kankainen, I. D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, and L. Trache, Mass of 23Al for testing the isobaric multiplet mass equation, Phys. Rev. C 80, 044330 (2009)ADSGoogle Scholar
  86. 86.
    A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V. S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, and J. Äystö, Highprecision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl, Phys. Rev. C 82, 052501(R) (2010)ADSGoogle Scholar
  87. 87.
    J. Su, W. P. Liu, N. T. Zhang, Y. P. Shen, Y. H. Lam, et al., Revalidation of the isobaric multiplet mass equation at A = 53, T = 3/2, Phys. Lett. B 756, 323 (2016)ADSGoogle Scholar
  88. 88.
    C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, et al., The decay of proton-rich nuclei in the mass A = 36–56 region, Nucl. Phys. A 792, 18 (2007)ADSGoogle Scholar
  89. 89.
    S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., β decay of the exotic T z =–2 nuclei 48Fe, 52Ni, and 56Zn, Phys. Rev. C 93, 044336 (2016)ADSGoogle Scholar
  90. 90.
    G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C 41, 030001 (2017)ADSGoogle Scholar
  91. 91.
    M. A. Bentley and S. M. Lenzi, Coulomb energy differences between high-spin states in isobaric multiplets, Prog. Part. Nucl. Phys. 59, 497 (2007)ADSGoogle Scholar
  92. 92.
    W. Benenson and E. Kashy, Isobaric quartets in nuclei, Rev. Mod. Phys. 51, 527 (1979)ADSGoogle Scholar
  93. 93.
    Y. H. Lam, N. A. Smirnova, and E. Caurier, Isospin nonconservation in sd-shell nuclei, Phys. Rev. C 87, 054304 (2013)ADSGoogle Scholar
  94. 94.
    P. Möller and J. R. Nix, Nuclear masses from a unified macroscopic-model, At. Data Nucl. Data Tables 39, 213 (1988)ADSGoogle Scholar
  95. 95.
    M. Goeppert-Mayer, On closed shells in nuclei (II), Phys. Rev. 75, 1969 (1949)ADSGoogle Scholar
  96. 96.
    I. Talmi, The shell model–Successes and limitations, Nucl. Phys. A 507, 295 (1990)ADSGoogle Scholar
  97. 97.
    F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, et al., Masses of exotic calcium isotopes pin down nuclear forces, Nature 498, 346 (2013)ADSGoogle Scholar
  98. 98.
    F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. A. Orr, et al., Shape coexistence and the N = 28 shell closure far from stability, Hyperfine Interactions 132, 147 (2001)ADSGoogle Scholar
  99. 99.
    A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, et al., Cross-shell excitation in two-proton knockout: Structure of 52Ca, Phys. Rev. C 74, 021302 (2006)ADSGoogle Scholar
  100. 100.
    R. V. F. Janssens, B. Fornal, P. F. Mantica, B. A. Brown, R. Broda, et al., Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca, Phys. Lett. B 546, 55 (2002)ADSGoogle Scholar
  101. 101.
    J. I. Prisciandaro, P. F. Mantica, B. A. Brown, D. W. Anthony, M. W. Cooper, et al., New evidence for a subshell gap at N = 32, Phys. Lett. B 510, 17 (2001)ADSGoogle Scholar
  102. 102.
    A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, et al., New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces, Phys. Rev. Lett. 109, 032506 (2012)ADSGoogle Scholar
  103. 103.
    M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 36, 1603 (2012)Google Scholar
  104. 104.
    P. Möller, J. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables 59, 185 (1995)ADSGoogle Scholar
  105. 105.
    H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L. Kratz, H. Herndl, B. A. Brown, and H. Rebel, rp-process nucleosynthesis at extreme temperature and density conditions, Phys. Rep. 294, 167 (1998)ADSGoogle Scholar
  106. 106.
    E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, et al., Mass measurements of very neutrondeficient Mo and Tc isotopes and their impact on rp process nucleosynthesis, Phys. Rev. Lett. 106, 122501 (2011)ADSGoogle Scholar
  107. 107.
    H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, End Point of the rp Process on Accreting Neutron Stars, Phys. Rev. Lett. 86, 3471 (2001)ADSGoogle Scholar
  108. 108.
    A. A. Valverde, M. Brodeur, G. Bollen, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, W.-J. Ong, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C. S. Sumithrarachchi, J. Surbrook, A. C. C. Villari, and I. T. Yandow, High-precision mass measurement of 56Cu and the redirection of the rp-process flow, Phys. Rev. Lett. 120, 032701 (2018)ADSGoogle Scholar
  109. 109.
    J. C. Hardy and I. S. Towner, New limits on fundamental weak-interaction parameters from superallowed β decay, Phys. Rev. Lett. 94, 092502 (2005)ADSGoogle Scholar
  110. 110.
    J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for Vud and CKM unitarity, Phys. Rev. C 91, 025501 (2015)ADSGoogle Scholar
  111. 111.
    F. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., T z =–1 → 0 β decays of 54Ni, 50Fe, 46Cr, and 42Ti and comparison with mirror (3He, t) measurements, Phys. Rev. C 91, 014301 (2015)ADSGoogle Scholar
  112. 112.
    I. S. Towner and J. C. Hardy, Theoretical corrections and world data for the superallowed ft values in the β decays of 42Ti, 46Cr, 50Fe, and 54Ni, Phys. Rev. C 92, 055505 (2015)ADSGoogle Scholar
  113. 113.
    M. Wang, H. S. Xu, Y. H. Zhang, X. L. Tu, Yu. A. Litvinov and CSRe collaboration, Mass measurement of short-lived nuclei at HIRFL-CSR, EPJ Web of Conferences 66, 02107 (2014)Google Scholar
  114. 114.
    J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, et al., High Intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013)ADSGoogle Scholar
  115. 115.
    X. Ma, W. Q. Wen, S. F. Zhang, D. Y. Yu, R. Cheng, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)ADSGoogle Scholar
  116. 116.
    Z. J. Wang, Proceedings of LINAC2012, Tel-Aviv, Israel, TUPB039Google Scholar
  117. 117.
    B. Wu, J. C. Yang, J. W. Xia, X. L. Yan, X. J. Hu, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)ADSGoogle Scholar
  118. 118.
    Yu. A. Litvinov and F. Bosch, Beta decay of highly charged ions, Rep. Prog. Phys. 74, 016301 (2011)ADSGoogle Scholar
  119. 119.
    T. Stöhlker, Yu. A. Litvinov, and A. Bräuning-Demian, M. Lestinsky, F. Herfurth, R. Maier, D. Prasuhn, R. Schuch, M. Steck, for the SPARC Collaboration, SPARC collaboration: New strategy for storage ring physics at FAIR, Hyperfine Interact 227, 45 (2014)ADSGoogle Scholar
  120. 120.
    P. M. Walker, Yu. A. Litvinov, and H. Geissel, The ILIMA project at FAIR, Int. J. Mass Spectr. 349–350, 247 (2013)Google Scholar
  121. 121.
    T. Yamaguchia, Y. Yamaguchi, and A. Ozawa, The challenge of precision mass measurements of short-lived exotic nuclei: Development of a new storage ring mass spectrometry, Int. J. Mass Spectr. 349–350, 240 (2013)Google Scholar
  122. 122.
    M. Grieser, Yu. A. Litvinov, R. Raabe, K. Blaum, Y. Blumenfeld, et al., Storage ring at HIE-ISOLDE, Eur. Phys. J.: Spec. Top. 207, 1 (2012)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations