Advertisement

Frontiers of Physics

, 13:132109 | Cite as

Nuclear magnetic moments in covariant density functional theory

  • Jian Li (李剑)
  • J. Meng (孟杰)
Review Article
  • 24 Downloads
Part of the following topical collections:
  1. Simplicity, Symmetry, and Beauty of Atomic Nuclei

Abstract

Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-A nuclei with doubly closed shell core plus or minus one nucleon and deformed odd-A nuclei.

Keywords

nuclear magnetic moment covariant density functional theory meson exchange current configuration mixing 

Notes

Acknowledgements

This work is dedicated to Prof. Akito Arima on the occasion of his 88th birthday, i.e., rice anniversary in Chinese character. Prof. Akito Arima has made important contributions not only in nuclear physics but also in promoting nuclear physics research and collaboration worldwide. It is a great honor that we have the opportunity to collaborate with Prof. Akito Arima on pseudospin symmetry and magnetic moments. The successful collaborations have deepened our understanding of the related fields. We would like to thank Akito Arima, Jinniu Hu, Haozhao Liang, Peter Ring, Jixuan Wei, Jiangming Yao and Ying Zhang for discussions and collaborations. This work was partly supported by the National kay R&D Program of China (Grant No. 2018YFA0404400), Natural Science Foundation of China (Grants Nos. 11335002, 11621131001, and 11675063), and China Scholarship Council (No. 201706175122).

References

  1. 1.
    A. Arima, M. Harvey, and K. Shimizu, Pseudo LS coupling and pseudo SU3 coupling schemes, Phys. Lett. B 30(8), 517 (1969)ADSGoogle Scholar
  2. 2.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Pseudospin symmetry in relativistic mean field theory, Phys. Rev. C 58(2), R628 (1998)ADSGoogle Scholar
  3. 3.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line, Phys. Rev. C 59(1), 154 (1999)ADSGoogle Scholar
  4. 4.
    H. Liang, J. Meng, and S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Nuclear magnetic properties and gamow-teller transitions, Adv. Nucl. Phys. 18, 1 (1987)Google Scholar
  6. 6.
    A. Arima and H. Horie, Configuration mixing and magnetic moments of nuclei, Prog. Theor. Phys. 11(4), 509 (1954)ADSGoogle Scholar
  7. 7.
    H. Horie and A. Arima, Configuration mixing and quadrupole moments of odd nuclei, Phys. Rev. 99(3), 778 (1955)ADSGoogle Scholar
  8. 8.
    K. Shimizu, M. Ichimura, and A. Arima, Magnetic moments and GT-type β-decay matrix elements in nuclei with a LS doubly closed shell plus or minus one nucleon, Nucl. Phys. A 226(2), 282 (1974)ADSGoogle Scholar
  9. 9.
    J. Li, J. M. Yao, J. Meng, and A. Arima, One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory, Prog. Theor. Phys. 125(6), 1185 (2011)ADSGoogle Scholar
  10. 10.
    J. Li, J. Meng, P. Ring, J. M. Yao, and A. Arima, Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction, Sci. China Phys. Mech. Astron. 54(2), 204 (2011)ADSGoogle Scholar
  11. 11.
    J. Li, Y. Zhang, J. M. Yao, and J. Meng, Magnetic moments of 33Mg in the time-odd relativistic mean field approach, Sci. China Ser. G 52(10), 1586 (2009)Google Scholar
  12. 12.
    J. Wei, J. Li, and J. Meng, Relativistic descriptions of nuclear magnetic moments, Prog. Theor. Phys. Supp. 196, 400 (2012)ADSGoogle Scholar
  13. 13.
    J. Li, J. X. Wei, J. N. Hu, P. Ring, and J. Meng, Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon, Phys. Rev. C 88(6), 064307 (2013)ADSGoogle Scholar
  14. 14.
    R. J. Blin-Stoyle, Theories of nuclear moments, Rev. Mod. Phys. 28(1), 75 (1956)ADSzbMATHGoogle Scholar
  15. 15.
    A. Arima, Nuclear magnetic moments and gamow-teller matrix elements — configuration mixing vs. mesonic effects, Prog. Part. Nucl. Phys. 1, 41 (1978)ADSGoogle Scholar
  16. 16.
    A. Arima, Nuclear magnetic properties and gamowteller transitions, Prog. Part. Nucl. Phys. 11, 53 (1984)ADSGoogle Scholar
  17. 17.
    I. S. Towner, Quenching of spin matrix elements in nuclei, Phys. Rep. 155(5), 263 (1987)ADSGoogle Scholar
  18. 18.
    B. Castel and I. S. Towner, Modern Theories of Nuclear Moments, Oxford University Press, USA, 1990Google Scholar
  19. 19.
    I. Talmi, 55 years of the shell model: A challenge to nuclear many-body theory, Int. J. Mod. Phys. E 14(06), 821 (2005)ADSGoogle Scholar
  20. 20.
    T. Schmidt, Über die magnetischen Momente der Atomkerne, Z. Phys. A 106(5–6), 358 (1937)Google Scholar
  21. 21.
    R. J. Blin-Stoyle, The magnetic moments of spin 1/2 Nuclei, Proc. Phys. Soc. A 66(12), 1158 (1953)ADSzbMATHGoogle Scholar
  22. 22.
    R. J. Blin-Stoyle and M. A. Perks, The deviations of nuclear magnetic moments from the schmidt lines, Proc. Phys. Soc. A 67(10), 885 (1954)ADSGoogle Scholar
  23. 23.
    A. Arima and H. Horie, Configuration mixing and magnetic moments of odd nuclei, Prog. Theor. Phys. 12(4), 623 (1954)ADSGoogle Scholar
  24. 24.
    H. Noya, A. Arima, and H. Horie, Nuclear moments and configuration mixing, Prog. Theor. Phys. Suppl. 8, 33 (1958)ADSGoogle Scholar
  25. 25.
    H. Miyazawa, Deviations of nuclear magnetic moments from the Schmidt lines, Prog. Theor. Phys. 6(5), 801 (1951)ADSzbMATHGoogle Scholar
  26. 26.
    F. Villars, Exchange current effects in the Deuteron, Phys. Rev. 86(4), 476 (1952)ADSzbMATHGoogle Scholar
  27. 27.
    M. Chemtob, Two-body interaction currents and nuclear magnetic moments, Nucl. Phys. A 123(2), 449 (1969)ADSGoogle Scholar
  28. 28.
    H. Hyuga, A. Arima, and K. Shimizu, Exchange magnetic moments, Nucl. Phys. A 336(3), 363 (1980)ADSGoogle Scholar
  29. 29.
    M. Ichimura, The magnetic moments of nuclei with a closed shell plus or minus one nucleon, Nucl. Phys. 63(3), 401 (1965)Google Scholar
  30. 30.
    H. Mavromatis, First and second order corrections to the magnetic moments of nuclei using realistic interactions, Nucl. Phys. 80(3), 545 (1966)Google Scholar
  31. 31.
    H. Mavromatis, Magnetic moments of nuclei with closed j–j shells plus or minus one nucleon, Nucl. Phys. A 104(1), 17 (1967)ADSMathSciNetGoogle Scholar
  32. 32.
    I. S. Towner and F. C. Khanna, Corrections to the single-particle M1 and gamow-teller matrix elements, Nucl. Phys. A 399(2), 334 (1983)ADSGoogle Scholar
  33. 33.
    A. Arima, A short history of nuclear magnetic moments and GT transitions, Sci. China Phys. Mech. Astron. 54(2), 188 (2011)ADSGoogle Scholar
  34. 34.
    N. J. Stone, D. Doran, M. Lindroos, J. Rikovska, M. Veskovic, et al., Magnetic moments of odd-A Sb isotopes to 133Sb: Significant evidence for mesonic exchange current contributions and on core collective g factors, Phys. Rev. Lett. 78(5), 820 (1997)ADSGoogle Scholar
  35. 35.
    J. Rikovska, T. Giles, N. J. Stone, K. van Esbroeck, G. White, et al., First on-line beta-nMR on oriented nuclei: Magnetic dipole moments of the (νp 1/2) –1 1/2 ground state in 67Ni and (νp 3/2)+1 3/2 ground state in 69Cu, Phys. Rev. Lett. 85(7), 1392 (2000)ADSGoogle Scholar
  36. 36.
    T. Ohtsubo, N. J. Stone, J. R. Stone, I. S. Towner, C. R. Bingham, et al., Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc, Phys. Rev. Lett. 109(3), 032504 (2012)ADSGoogle Scholar
  37. 37.
    P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSGoogle Scholar
  38. 38.
    D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, elativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep. 409(3–4), 101 (2005)ADSGoogle Scholar
  39. 39.
    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree–Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys. 57(3), 470 (2006)ADSGoogle Scholar
  40. 40.
    J. Meng, J.-Y. Guo, J. Li, Z. P. Li, H. Z. Liang, W. H. Long, Y. F. Niu, Z. M. Niu, Y. Zhang, P. W. Zhao, and S. G. Zhou, Covariant density functional theory in nuclear physics, Prog. Phys. 31(4), 199 (2011)Google Scholar
  41. 41.
    T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys. 66(3), 519 (2011)ADSGoogle Scholar
  42. 42.
    J. Meng, Relativistic Density Functional for Nuclear Structure, World Scientific, Singapore, 2015Google Scholar
  43. 43.
    M. M. Sharma, G. A. Lalazissis, and P. Ring, Rho meson coupling in the relativistic mean field theory and description of exotic nuclei, Phys. Lett. B 317(4), 9 (1993)ADSGoogle Scholar
  44. 44.
    S. G. Zhou, J. Meng, and P. Ring, Spin symmetry in the antinucleon spectrum, Phys. Rev. Lett. 91(3), 262501 (2003)ADSGoogle Scholar
  45. 45.
    W. Koepf and P. Ring, A relativistic description of rotating nuclei: The yrast line of 20Ne, Nucl. Phys. A 493(1), 61 (1989)ADSGoogle Scholar
  46. 46.
    J. König and P. Ring, Identical bands in superdeformed nuclei: A relativistic description, Phys. Rev. Lett. 71(19), 3079 (1993)ADSGoogle Scholar
  47. 47.
    A. V. Afanasjev and P. Ring, Time-odd mean fields in the rotating frame: Microscopic nature of nuclear magnetism, Phys. Rev. C 62(3), 031302 (2000)ADSGoogle Scholar
  48. 48.
    A. V. Afanasjev and H. Abusara, Time-odd mean fields in covariant density functional theory: Rotating systems, Phys. Rev. C 82(3), 034329 (2010)ADSGoogle Scholar
  49. 49.
    P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B 699(3), 181 (2011)ADSGoogle Scholar
  50. 50.
    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett. 107(12), 122501 (2011)ADSGoogle Scholar
  51. 51.
    J. Meng, J. Peng, S.-Q. Zhang, and P.-W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys. 8(1), 55 (2013)Google Scholar
  52. 52.
    L. D. Miller, Relativistic single-particle potentials for nuclei, Ann. Phys. 91(1), 40 (1975)ADSMathSciNetGoogle Scholar
  53. 53.
    B. D. Serot, Elastic electron-nucleus scattering in a relativistic theory of nuclear structure, Phys. Lett. B 107(4), 263 (1981)ADSGoogle Scholar
  54. 54.
    J. A. McNeil, R. D. Amado, C. J. Horowitz, M. Oka, J. R. Shepard, and D. A. Sparrow, Resolution of the magnetic moment problem in relativistic theories, Phys. Rev. C 34(2), 746 (1986)ADSGoogle Scholar
  55. 55.
    S. Ichii, W. Bentz, A. Arima, and T. Suzuki, RPA type vertex corrections to isoscalar magnetic moments in the sigma-omega model, Phys. Lett. B 192(1–2), 11 (1987)ADSGoogle Scholar
  56. 56.
    J. R. Shepard, E. Rost, C.-Y. Cheung, and J. A. Mc Neil, Magnetic response of closed shell –1 nuclei in Dirac-Hartree approximation, Phys. Rev. C 37(3), 1130 (1988)ADSGoogle Scholar
  57. 57.
    U. Hofmann and P. Ring, A new method to calculate magnetic moments in relativistic mean field theories, Phys. Lett. B 214(3), 307 (1988)ADSGoogle Scholar
  58. 58.
    R. J. Furnstahl and C. E. Price, Relativistic Hartree calculations of odd-A nuclei, Phys. Rev. C 40(3), 1398 (1989)ADSGoogle Scholar
  59. 59.
    J. M. Yao, H. Chen, and J. Meng, Time-odd triaxial relativistic mean field approach for nuclear magnetic moments, Phys. Rev. C 74(2), 024307 (2006)ADSGoogle Scholar
  60. 60.
    T. M. Morse, C. E. Price, and J. R. Shepard, Meson exchange current corrections to magnetic moments in quantum hadro-dynamics, Phys. Lett. B 251(2), 241 (1990)ADSGoogle Scholar
  61. 61.
    R. J. Furnstahl and B. D. Serot, Nuclear currents in a relativistic mean field theory, Nucl. Phys. A 468(3–4), 539 (1987)ADSGoogle Scholar
  62. 62.
    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)ADSGoogle Scholar
  63. 63.
    T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C 65(4), 044308 (2002)ADSGoogle Scholar
  64. 64.
    T. Nikšić, D. Vretenar, and P. Ring, Random-phase approximation based on relativistic point-coupling models, Phys. Rev. C 72(1), 014312 (2005)ADSGoogle Scholar
  65. 65.
    J. Daoutidis and P. Ring, Continuum random-phase approximation for relativistic point coupling models, Phys. Rev. C 80(2), 024309 (2009)ADSGoogle Scholar
  66. 66.
    C. De Conti, A. P. Galeão, and F. Krmpotić, Relativistic RPA for isobaric analogue and Gamow–Teller resonances in closed shell nuclei, Phys. Lett. B 444(2), 14 (1998)ADSGoogle Scholar
  67. 67.
    N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model (II): Nuclear spin and isospin excitations, Phys. Rev. C 69(5), 054303 (2004)ADSGoogle Scholar
  68. 68.
    H. Z. Liang, N. V. Giai, and J. Meng, Spin-isospin resonances: A self-consistent covariant description, Phys. Rev. Lett 101(12), 122502 (2008)ADSGoogle Scholar
  69. 69.
    B. D. Serot, Quantum hadrodynamics, Rep. Prog. Phys. 55(4), 1855 (1992)ADSGoogle Scholar
  70. 70.
    W. Bentz, A. Arima, H. Hyuga, K. Shimizu, and K. Yazaki, Ward identity in the many-body system and magnetic moments, Nucl. Phys. A 436(4), 593 (1985)ADSGoogle Scholar
  71. 71.
    R. J. Furnstahl, Convection currents in nuclei in a relativistic mean field theory, Phys. Rev. C 38(1), 370 (1988)ADSMathSciNetGoogle Scholar
  72. 72.
    H. Ito and L. S. Kisslinger, Nuclear magnetic moments in the hybrid quark-hadron model, Ann. Phys. 174(1), 169 (1987)ADSGoogle Scholar
  73. 73.
    W. H. Long, J. Meng, N. Van Giai, and S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent mesonnucleon coupling, Phys. Rev. C 69(3), 034319 (2004)ADSGoogle Scholar
  74. 74.
    T. Yamazaki, T. Nomura, S. Nagamiya, and T. Katou, Anomalous orbital magnetism of proton deduced from the magnetic moment of the 11 state of 210Po, Phys. Rev. Lett. 25(8), 547 (1970)ADSGoogle Scholar
  75. 75.
    H. Horie and K. Sugimoto, Nuclear moments and nuclear structure, vol. 34 (J. Phys. Soc. Japan Suppl., 1973)Google Scholar
  76. 76.
    A. Green, A. Kallio, and K. Kolltveit, Odd parity excitations of 16O with a realistic nucleon-nucleon interaction, Phys. Lett. 14(2), 142 (1965)ADSGoogle Scholar
  77. 77.
    V. Gillet, A. Green, and E. Sanderson, Particle-hole description of lead 208, Phys. Lett. 11(1), 44 (1964)ADSGoogle Scholar
  78. 78.
    Y. E. Kim and J. O. Rasmussen, Energy levels of 210Bi and 210Po and the shell-model residual force, Nucl. Phys. 47, 184 (1963)Google Scholar
  79. 79.
    K. A. Brueckner and J. L. Gammel, Properties of Nuclear Matter, Phys. Rev. 109(4), 1023 (1958)ADSMathSciNetGoogle Scholar
  80. 80.
    T. Hamada and I. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nucl. Phys. 34(2), 382 (1962)Google Scholar
  81. 81.
    G. Bertsch, J. Borysowicz, H. McManus, and W. Love, Interactions for inelastic scattering derived from realistic potentials, Nucl. Phys. A 284(3), 399 (1977)ADSGoogle Scholar
  82. 82.
    A. Arima and L. J. Huang-Lin, Magnetic moments of odd-mass nuclei with simple configurations, Phys. Lett. B 41(4), 435 (1972)ADSGoogle Scholar
  83. 83.
    J. Blomqvist, N. Freed, and H. Zetterström, Magnetic moments of single particle states in 207Pb and 209Bi, Phys. Lett. 18(1), 47 (1965)ADSGoogle Scholar
  84. 84.
    P. Ring and E. Werner, Distribution of single-particle strengths in the nuclei 207Tl, 207Pb, 209Bi and 209Pb, Nucl. Phys. A 211, 198 (1973)ADSGoogle Scholar
  85. 85.
    V. Bernard and N. Van Giai, Effects of collective modes on the single-particle states and the effective mass in 208Pb, Nucl. Phys. A 348, 75 (1980)ADSGoogle Scholar
  86. 86.
    E. Litvinova and P. Ring, Covariant theory of particlevibrational coupling and its effect on the single-particle spectrum, Phys. Rev. C 73(4), 044328 (2006)ADSGoogle Scholar
  87. 87.
    P. Ring and E. Litvinova, Particle-vibrational coupling in covariant density-functional theory, Phys. At. Nucl. 72, 1285 (2009)Google Scholar
  88. 88.
    N. Stone, Tech. Rep., International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2014Google Scholar
  89. 89.
    G. Neyens, Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei, Rep. Prog. Phys. 66(4), 633 (2003)ADSGoogle Scholar
  90. 90.
    A. Bohr and B. R. Mottelson, Nuclear Structure Volume II: Nuclear Deformation, W. A. Benjamin, Inc., 1975Google Scholar
  91. 91.
    E. K. Warburton, J. A. Becker, and B. A. Brown, Mass systematics for A = 29–44 nuclei: The deformed A ~ 32 region, Phys. Rev. C 41(3), 1147 (1990)ADSGoogle Scholar
  92. 92.
    S. Nummela, F. Nowacki, P. Baumann, E. Caurier, J. Cederkäll, et al., Intruder features in the island of inversion: The case of 33Mg, Phys. Rev. C 64(5), 054313 (2001)ADSGoogle Scholar
  93. 93.
    B. V. Pritychenko, T. Glasmacher, P. D. Cottle, R. W. Ibbotson, K. W. Kemper, L. A. Riley, A. Sakharuk, H. Scheit, M. Steiner, and V. Zelevinsky, Structure of the “island of inversion” nucleus 33Mg, Phys. Rev. C 65(6), 061304 (2002)ADSGoogle Scholar
  94. 94.
    Z. Elekes, Z. Dombradi, A. Saito, N. Aoi, H. Baba, et al., Proton inelastic scattering studies at the borders of the “island of inversion”: The 30,31Na and 33,34Mg case, Phys. Rev. C 73(4), 044314 (2006)ADSGoogle Scholar
  95. 95.
    V. Tripathi, S. L. Tabor, P. F. Mantica, Y. Utsuno, P. Bender, et al., Intruder Configurations in the A = 33 isobars: 33Mg and 33Al, Phys. Rev. Lett. 101(14), 142504 (2008)ADSGoogle Scholar
  96. 96.
    D. T. Yordanov, M. Kowalska, K. Blaum, M. D. Rydt, K. T. Flanagan, P. Lievens, R. Neugart, G. Neyens, and H. H. Stroke, Spin and magnetic moment of 33Mg: evidence for a negative-parity intruder ground State, Phys. Rev. Lett. 99(21), 212501 (2007)ADSGoogle Scholar
  97. 97.
    R. D. Lawson, Theory of the Nuclear Shell Model, Oxford University Press, Oxford, 1980Google Scholar
  98. 98.
    M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41(3), 030003 (2017)ADSGoogle Scholar
  99. 99.
    H. Lü, L. S. Geng, and J. Meng, Constrained relativistic mean field approach with fixed configurations, Eur. Phys. J. A 31(3), 273 (2007)ADSGoogle Scholar
  100. 100.
    E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77(2), 427 (2005)ADSGoogle Scholar
  101. 101.
    Y. M. Zhao and A. Arima, Nucleon-pair approximation to the nuclear shell model, Phys. Rep. 545, 1 (2014)ADSGoogle Scholar
  102. 102.
    B.-A. Bian, Y.-M. Di, G.-L. Long, Y. Sun, J.-Y. Zhang, and J. A. Sheikh, Systematics of g factors of 2+ 1 states in even-even nuclei from Gd to Pt: A microscopic description by the projected shell model, Phys. Rev. C 75(1), 014312 (2007)ADSGoogle Scholar
  103. 103.
    R. Bauer, J. Speth, V. Klemt, P. Ring, E. Werner, and T. Yamazaki, Magnetic multipole moments and transition probabilities of single-particle states around 208Pb, Nucl. Phys. A 209(3), 535 (1973)ADSGoogle Scholar
  104. 104.
    M. Rho, Quenching of axial-vector coupling constant in β-decay and pion-nucleus optical potential, Nucl. Phys. A 231, 493 (1974)ADSGoogle Scholar
  105. 105.
    E. Oset and M. Rho, Axial currents in nuclei: The Gamow–Teller matrix element, Phys. Rev. Lett. 42(1), 47 (1979)ADSGoogle Scholar
  106. 106.
    W. Knüpfer, M. Dillig, and A. Richter, Quenching of the magnetic multipole strength distribution and of the anomalous magnetic moment in complex nuclei and mesonic renormalization of the nuclear spin current, Phys. Lett. B 95(3–4), 349 (1980)ADSGoogle Scholar
  107. 107.
    W. H. Long, N. Van Giai, and J. Meng, Densitydependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of PhysicsJilin UniversityChangchunChina
  2. 2.Department of PhysicsWestern Michigan UniversityKalamazooUSA
  3. 3.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina
  4. 4.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  5. 5.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations