Frontiers of Physics

, 13:132107 | Cite as

Symmetries of the interacting boson model

  • P. Van IsackerEmail author
Review Article
Part of the following topical collections:
  1. Simplicity, Symmetry, and Beauty of Atomic Nuclei


This contribution reviews the symmetry properties of the interacting boson model of Arima and Iachello. While the concept of a dynamical symmetry is by now a familiar one, this is not necessarily so for the extended notions of partial dynamical symmetry and quasi dynamical symmetry, which can be beautifully illustrated in the context of the interacting boson model. The main conclusion of the analysis is that dynamical symmetries are scarce while their partial and quasi extensions are ubiquitous.


interacting boson model 



I wish, on the occasion of the 88th anniversary of his birthday, to express my sincere thanks to Akito Arima for many years of stimulating discussions and his continual inspiration of my research. Many thanks are due to Amiram Leviatan and José-Enrique García-Ramos, in collaboration with whom many of the results reported in this contribution have been obtained.


  1. 1.
    A. Arima and F. Iachello, Collective nuclear states as representations of a SU(6) group, Phys. Rev. Lett. 35(16), 1069 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    J. Rainwater, Nuclear energy level argument for a spheroidal nuclear model, Phys. Rev. 79(3), 432 (1950)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)Google Scholar
  4. 4.
    D. M. Brink, A. F. R. De Toledo Piza, and A. K. Kerman, Interval rules and intensity ratios in vibrating spherical nuclei, Phys. Lett. 19(5), 413 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)Google Scholar
  6. 6.
    L. Wilets and M. Jean, Surface oscillations in even-even nuclei, Phys. Rev. C 102, 788 (1956)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Collective nuclear states as symmetric couplings of proton and neutron excitations, Phys. Lett. B 66(3), 205 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    T. Otsuka, A. Arima, and F. Iachello, Nuclear shell model and interacting bosons, Nucl. Phys. A 309(1–2), 1 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Shell model description of interacting bosons, Phys. Lett. B 76(2), 139 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Elliott and A. P. White, An isospin invariant form of the interacting boson model, Phys. Lett. B 97(2), 169 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Elliott and J. A. Evans, An intrinsic spin for interacting bosons, Phys. Lett. B 101(4), 216 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51(2), 106 (1937)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Racah, Theory of complex spectra (III), Phys. Rev. 63(9–10), 367 (1943)ADSCrossRefGoogle Scholar
  14. 14.
    G. Racah, Theory of complex spectra (IV), Phys. Rev. 76(9), 1352 (1949)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    J. P. Elliott, Collective motion in the nuclear shell model (I): Classification schemes for states of mixed configurations, Proc. R. Soc. Lond. A 245(1240), 128 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. P. Elliott, Collective motion in the nuclear shell model (II): The introduction of intrinsic wave-functions, Proc. R. Soc. Lond. A 245(1243), 562 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    F. Iachello, Lie Algebras and Applications, Springer, Berlin, 2006zbMATHGoogle Scholar
  18. 18.
    A. Frank, J. Jolie, and P. Van Isacker, Symmetries in Atomic Nuclei, Springer, Berlin, 2009CrossRefGoogle Scholar
  19. 19.
    P. Van Isacker, Partial and quasi dynamical symmetries in nuclei, Nucl. Phys. News 24(3), 23 (2014)CrossRefGoogle Scholar
  20. 20.
    J. N. Ginocchio and M. W. Kirson, Relationship between the Bohr collective hamiltonian and the interacting-boson model, Phys. Rev. Lett. 44(26), 1744 (1980)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model, Phys. Rev. Lett. 44(26), 1747 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    A. Bohr and B. R. Mottelson, Features of nuclear deformations produced by the alignment of individual particles or pairs, Phys. Scr. 22(5), 468 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Bohr and B. R. Mottelson, Nuclear Structure (II): Nuclear Deformations, Benjamin, New York, 1975zbMATHGoogle Scholar
  24. 24.
    R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York, 1981zbMATHGoogle Scholar
  25. 25.
    E. López-Moreno and O. Castaños, Shapes and stability within the interacting boson model: Dynamical symmetries, Phys. Rev. C 54(5), 2374 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V. Werner, Triple point of nuclear deformations, Phys. Rev. Lett. 89(18), 182502 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    R. F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nat. Phys. 2(12), 811 (2006)CrossRefGoogle Scholar
  28. 28.
    P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys. 82(3), 2155 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    O. Castaños, E. Chacón, A. Frank, and M. Moshinsky, Group theory of the interacting boson model of the nucleus, J. Math. Phys. 20(1), 35 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Arima and F. Iachello, Interacting boson model of collective states (I): The vibrational limit, Ann. Phys. 99(2), 253 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    A. Arima and F. Iachello, Interacting boson model of collective nuclear states (II): The rotational limit, Ann. Phys. 111(1), 201 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    A. Arima and F. Iachello, Interacting boson model of collective nuclear states (IV): The O(6) limit, Ann. Phys. 123(2), 468 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    A. M. Shirokov, N. A. Smirnova, and Yu. F. Smirnov, Parameter symmetry of the interacting boson model, Phys. Lett. B 434(3–4), 237 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987CrossRefGoogle Scholar
  35. 35.
    D. D. Warner, and R. F. Casten, Predictions of the interacting boson approximation in a consistent Q framework, Phys. Rev. C 28(4), 1798 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    P. O. Lipas, P. Toivonen, and D. D. Warner, IBA consistent-Q formalism extended to the vibrational region, Phys. Lett. B 155(5–6), 295 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    R. F. Casten, Status of experimental tests of the IBA, in: Interacting Bose–Fermi Systems in Nuclei, edited by F. Iachello, Plenum, New York, 1981, page 3Google Scholar
  38. 38.
    P. Cejnar and J. Jolie, Dynamical-symmetry content of transitional IBM-1 hamiltonians, Phys. Lett. B 420(3–4), 241 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Alhassid and A. Leviatan, Partial dynamical symmetry, J. Phys. A 25(23), L1265 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    A. Leviatan, Partial dynamical symmetry in deformed nuclei, Phys. Rev. Lett. 77(5), 818 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    A. Leviatan, A. Novoselsky, and I. Talmi, O(5) symmetry in IBA-1 — the O(6)–U(5) transition region, Phys. Lett. B 172(2), 144 (1986)ADSCrossRefGoogle Scholar
  42. 42.
    P. Van Isacker, Dynamical symmetry and higher-order interactions, Phys. Rev. Lett. 83(21), 4269 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    A. Leviatan and P. Van Isacker, Generalized partial dynamical symmetry in nuclei, Phys. Rev. Lett. 89(22), 222501 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    A. Leviatan, Partial dynamical symmetries, Prog. Part. Nucl. Phys. 66(1), 93 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    C. Kremer, J. Beller, A. Leviatan, N. Pietralla, G. Rainovski, R. Trippel, and P. Van Isacker, Linking partial and quasi dynamical symmetries in rotational nuclei, Phys. Rev. C 89, 041302(R) (2014)ADSCrossRefGoogle Scholar
  46. 46.
    F. Pan and J. P. Draayer, New algebraic solutions for SO(6) ↔ U(5) transitional nuclei in the interacting boson model, Nucl. Phys. A 636(2), 156 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    D. J. Rowe, P. Rochford, and J. Repka, Dynamic structure and embedded representation in physics: The group theory of the adiabatic approximation, J. Math. Phys. 29(3), 572 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    D. J. Rowe, C. Bahri, and W. Wijesundera, Exactly solvable model of a superconducting to rotational phase transition, Phys. Rev. Lett. 80(20), 4394 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    C. Bahri and D. J. Rowe, SU(3) quasi-dynamical symmetry as an organizational mechanism for generating nuclear rotational motions, Nucl. Phys. A 662(1–2), 125 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    M. Macek, J. Dobeš, and P. Cejnar, Transition from γ-rigid to γ-soft dynamics in the interacting boson model: Quasicriticality and quasidynamical symmetry, Phys. Rev. C 80(1), 014319 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    D. Bonatsos, E. A. McCutchan, and R. F. Casten, SU(3) quasidynamical symmetry underlying the Alhassid–Whelan arc of regularity, Phys. Rev. Lett. 104(2), 022502 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grand Accélérateur National d’Ions LourdsCEA/DRF–CNRS/IN2P3 Bd Henri BecquerelCaenFrance

Personalised recommendations