Frontiers of Physics

, 13:130316 | Cite as

Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling

  • Yong-Kai Liu
  • Hong-Xia Yue
  • Liang-Liang Xu
  • Shi-Jie Yang
Research article


Three types of vortex-pair are identified in two-component Bose–Einstein condensates (BEC) of different kinds of spin-orbit coupling. One type holds the two vortices in one component of the twocomponent condensates. Both the other two types hold a vortex in each component of the twocomponent condensates, and exhibit meron-pair textures that have either null or unit topological charge, respectively. The cores of the two vortices are connected by a string of the relative phase jump. These vortex pairs can be generated from a vortex-free wave packet by incorporating different non- Abelian gauge field into the BEC. When a Rabi coupling is introduced, the distance between the two cores is effectively controlled by the Rabi coupling strength and a transition of vortex configurations is observed.


Bose–Einstein condensates spin-orbit coupling vortex-pair states 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11604193 and 11774034, and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201601D202012).


  1. 1.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates, Front. Phys. 8(3), 302 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Li and J. K. Xue, Stationary and moving solitons in spin-orbit-coupled spin-1 Bose–Einstein condensates, Front. Phys. 13(2), 130307 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Huang, Z. Meng, P. Wang, P. Peng, S. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Wu, L. Zhang, W. Sun, X. Xu, B. Wang, S. Ji, Y. Deng, S. Chen, X. Liu, and J. Pan, Realization of twodimensional spin-orbit coupling for Bose–Einstein condensates, Science 354(6308), 83 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    W. Sun, B. Wang, X. Xu, C. Yi, L. Zhang, Z. Wu, Y. Deng, X. Liu, S. Chen, and J. Pan, Long-lived 2D Spin-Orbit coupled Topological Bose Gas, arXiv: 1710.00717 (2017)Google Scholar
  13. 13.
    S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin-orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Spinorbit coupled weakly interacting Bose–Einstein condensates in harmonic traps, Phys. Rev. Lett. 108(1), 010402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    B. Ramachandhran, B. Opanchuk, X. J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin-orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhou, Y. Li, Z. Cai, and C. Wu, Unconventional states of bosons with the synthetic spin-orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates, Phys. Rep. 520(5), 253 (2012)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Mäkelä, Explicit expressions for the topological defects of spinor Bose–Einstein condensates, J. Phys. Math. Gen. 39(23), 7423 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Wall-vortex composite solitons in two-component Bose–Einstein condensates, Phys. Rev. A 88(1), 013620 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    T. A. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. M. Cho, Monopoles and knots in Skyrme theory, Phys. Rev. Lett. 87(25), 252001 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies, Phys. Rev. B 47(24), 16419 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341(6146), 636 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Kawaguchi, M. Kobayashi, M. Nitta, and M. Ueda, Topological excitations in spinor Bose–Einstein condensates, Prog. Theor. Phys. Suppl. 186, 455 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    K. Kasamatsu, M. Tsubota, and M. Ueda, Spin textures in rotating two-component Bose–Einstein condensates, Phys. Rev. A 71(4), 043611 (2005)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    K. Kasamatsu, M. Tsubota, and M. Ueda, Vortex molecules in coherently coupled two-component Bose–Einstein condensates, Phys. Rev. Lett. 93(25), 250406 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    T. D. Stanescu, C. Zhang, and V. Galitski, Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions, Phys. Rev. Lett. 99(11), 110403 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Ruseckas, G. Juzeliunas, P. Ohberg, and M. Fleischhauer, Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett. 95(1), 010404 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T. Stanescu, B. Anderson, and V. Galitski, Spin-orbit coupled Bose–Einstein condensates, Phys. Rev. A 78(2), 023616 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    J. Radić, T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Wall-vortex composite solitons in two-component Bose–Einstein condensates, Phys. Rev. A 88(1), 013620 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    H. Wang, L. Wen, H. Yang, C. Shi, and J. Li, Vortex states and spin textures of rotating spin-orbit-coupled Bose–Einstein condensates in a toroidal trap, J. Phys. At. Mol. Opt. Phys. 50(15), 155301 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys. 187(1), 318 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates, J. Comput. Phys. 217(2), 612 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose–Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    T. Kawakami, T. Mizushima, and K. Machida, Textures of F = 2 spinor Bose–Einstein condensates with spinorbit coupling, Phys. Rev. A84, 011607(R) (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Y. K. Liu and S. J. Yang, Three-dimensional dimeron as a stable topological object, Phys. Rev. A 91(4), 043616 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M. J. Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell, Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose–Einstein condensate, Phys. Rev. Lett. 83(17), 3358 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations