# Regularity of atomic nuclei with random interactions: *sd* bosons

- 7 Downloads

**Part of the following topical collections:**

## Abstract

Atomic nuclei are complex systems with gigantic configuration spaces, therefore truncations of model spaces are indispensable. Due to the short-range nature of the nuclear interactions, one may resort to a truncation by using coherent nucleon-pairs which are conveniently further simplified as bosons, such as *sd* bosons. The discovery of the spin-zero ground state dominance with random two-body interactions led to a series of studies on regular structure for *sd* bosons in the presence of random interactions, and this review article summarizes studies along this line in last two decades. We concentrate on various patterns exhibited in *sd* boson systems, and demonstrate that many random samples which were thought to be noisy exhibit very regular patterns, some of which are interpreted in terms of the U(5), O(6), \(\overline {O\left( 6 \right)} \), SU(3), and \(\overline {SU\left( 3 \right)} \) dynamical symmetries of the *sd* interacting boson model.

## Keywords

regularity random interactions*sd*bosons

## Notes

### Acknowledgements

We thank Professor Arima Akito for his collaboration and constant encouragements in studies summarized in this paper, and many other works such as the nucleon-pair approximations, systematics of nuclear masses, and algebraic studies of angular momentum. He is one of the co-authors in most of these papers; without him many of these studies would not likely be performed. We thank the National Natural Science Foundation of China under Grant No. 11675101, Shanghai Key Laboratory (Grant No. 11DZ2260700), and the Program of Shanghai Academic/Technology Research Leader (Grant No. 16XD1401600) for financial support.

## References

- 1.C. W. Johnson, G. F. Bertsch, and D. J. Dean, Orderly spectra from random interactions,
*Phys. Rev. Lett.*80(13), 2749 (1998)ADSGoogle Scholar - 2.C. Johnson, G. Bertsch, D. Dean, and I. Talmi, Generalized seniority from random Hamiltonians,
*Phys. Rev. C*61(1), 014311 (1999)ADSGoogle Scholar - 3.D. Mulhall, A. Volya, and V. Zelevinsky, Geometric chaoticity leads to ordered spectra for randomly interacting fermions,
*Phys. Rev. Lett.*85(19), 4016 (2000)ADSGoogle Scholar - 4.V. Zelevinsky and A. Volya, Nuclear structure,
*random interactions and mesoscopic physics, Phys. Rep.*391(3–6), 311 (2004)Google Scholar - 5.Y. M. Zhao and A. Arima, Towards understanding the probability of 0
^{+}ground states in even-even many-body systems,*Phys. Rev. C*64(4), 041301 (2001)ADSGoogle Scholar - 6.P. Chau Huu-Tai, A. Frank, N. A. Smirnova, and P. Van Isacker, Geometry of random interactions,
*Phys. Rev. C*66(6), 061302 (2002)ADSGoogle Scholar - 7.Y. M. Zhao, A. Arima, and N. Yoshinaga, Simple approach to the angular momentum distribution in the ground states of many-body systems,
*Phys. Rev. C*66(3), 034302 (2002)ADSGoogle Scholar - 8.T. Papenbrock and H. A. Weidenmüller, Distribution of spectral widths and preponderance of spin-0 ground states in nuclei,
*Phys. Rev. Lett.*93(13), 132503 (2004)ADSGoogle Scholar - 9.N. Yoshinaga, A. Arima, and Y. M. Zhao, Lowest bound of energies for random interactions and the origin of spin-zero ground state dominance in even-even nuclei,
*Phys. Rev. C*73(1), 017303 (2006)ADSGoogle Scholar - 10.Y. M. Zhao, A. Arima, and N. Yoshinaga, Manybody systems interacting via a two-body random ensemble (I): Angular momentum distribution in the ground states,
*Phys. Rev. C*66(6), 064322 (2002)ADSGoogle Scholar - 11.Y. M. Zhao, A. Arima, and N. Yoshinaga, Angular momentum distribution of the ground states in the presence of random interactions: Boson systems,
*Phys. Rev. C*68(1), 014322 (2003)ADSGoogle Scholar - 12.Y. Lu, Y. M. Zhao, and A. Arima, Spin I ground state probabilities of integrable systems under random interactions,
*Phys. Rev. C*91(2), 027301 (2015)ADSGoogle Scholar - 13.Y. M. Zhao, A. Arima, and N. Yoshinaga, Regularities of many-body systems interacting by a two-body random ensemble,
*Phys. Rep.*400(1), 1 (2004)ADSMathSciNetGoogle Scholar - 14.H. A. Weidenmüller and G. E. Mitchell, Random matrices and chaos in nuclear physics: Nuclear structure,
*Rev. Mod. Phys.*81(2), 539 (2009)ADSGoogle Scholar - 15.Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, and O. Scholten, Patterns of the ground states in the presence of random interactions: Nucleon systems,
*Phys. Rev. C*70(5), 054322 (2004)ADSGoogle Scholar - 16.T. Papenbrock and H. A. Weidenmüller, Abundance of ground states with positive parity,
*Phys. Rev. C*78(5), 054305 (2008)ADSGoogle Scholar - 17.N. Shimizu and T. Otsuka, Ground state properties with a random two-body interaction,
*Prog. Theor. Phys.*118(3), 491 (2007)ADSGoogle Scholar - 18.M. Horoi, A. Volya, and V. Zelevinsky, Random interactions,
*isospin, and the ground states of odd-A and odd-odd nuclei, Phys. Rev. C*66(2), 024319 (2002)Google Scholar - 19.V. Velázquez, J. G. Hirsch, A. Frank, and A. P. Zuker, A study of randomness,
*correlations, and collectivity in the nuclear shell model, Phys. Rev. C*67(3), 034311 (2003)Google Scholar - 20.C. W. Johnson and H. A. Nam, New puzzle for manybody systems with random two-body interactions,
*Phys. Rev. C*75(4), 047305 (2007)ADSGoogle Scholar - 21.G. J. Fu, J. J. Shen, Y. M. Zhao, and A. Arima, Regularities in low-lying states of atomic nuclei with random interactions,
*Phys. Rev. C*91(5), 054319 (2015)ADSGoogle Scholar - 22.G. J. Fu, L. Y. Jia, Y. M. Zhao, and A. Arima, Monopole pairing correlations with random interactions,
*Phys. Rev. C*96(4), 044306 (2017)ADSGoogle Scholar - 23.Y. Lei, Z. Y. Xu, Y. M. Zhao, S. Pittel, and A. Arima, Emergence of generalized seniority in low-lying states with random interactions,
*Phys. Rev. C*83(2), 024302 (2011)ADSGoogle Scholar - 24.G. J. Fu, L. Y. Jia, Y. M. Zhao, and A. Arima, Monopole pairing correlations with random interactions,
*Phys. Rev. C*96(4), 044306 (2017)ADSGoogle Scholar - 25.M. W. Kirson and J. A. Mizrahi, Random interactions with isospin,
*Phys. Rev. C*76(6), 064305 (2007)ADSGoogle Scholar - 26.M. Horoi, A. Volya, and V. Zelevinsky, Random interactions,
*isospin, and the ground states of odd-A and odd-odd nuclei, Phys. Rev. C*66(2), 024319 (2002)Google Scholar - 27.Y. M. Zhao, A. Arima, and N. Yoshinaga, Many-body systems interacting via a two-body random ensemble. I. Angular momentum distribution in the ground states,
*Phys. Rev. C*66(6), 064322 (2002)ADSGoogle Scholar - 28.A. Arima and F. Iachello, Interacting boson model of collective states I: The vibrational limit,
*Ann. Phys.*99(2), 253 (1976)ADSGoogle Scholar - 29.A. Arima and F. Iachello, Interacting boson model of collective nuclear states II: The rotational limit,
*Ann. Phys.*111(1), 209 (1978)ADSGoogle Scholar - 30.A. Arima and F. Iachello, Interacting boson model of collective nuclear states IV: The O(6) limit,
*Ann. Phys.*123(2), 468 (1979)ADSGoogle Scholar - 31.M. G. Mayer, On closed shells in nuclei (II),
*Phys. Rev.*75(12), 1969 (1949)ADSGoogle Scholar - 32.J. H. D. Jensen, J. Suess, and O. Haxel, Modellmäβige deutung der ausgezeichneten nucleonenzahlen im kernbau,
*Naturwissenschaften*36(5), 155 (1949)ADSGoogle Scholar - 33.O. Haxel, J. H. D. Jensen, and H. E. Suess, On the “magic numbers” in nuclear structure,
*Phys. Rev.*75(11), 1766 (1949)ADSGoogle Scholar - 34.A. Bohr and B. R. Mottelson, Nuclear Structure, Volumes I and II, Benjamin, New York; World Scientific, Singapore, 1998Google Scholar
- 35.F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, 1987Google Scholar
- 36.R. Bijker and A. Frank, Band structure from random interactions,
*Phys. Rev. Lett.*84(3), 420 (2000)ADSGoogle Scholar - 37.Y. M. Zhao, J. L. Ping, and A. Arima, Collectivity of low-lying states under random two-body interactions,
*Phys. Rev. C*76(5), 054318 (2007)ADSGoogle Scholar - 38.J. N. Ginocchio, An exact fermion model with monopole and quadrupole pairing,
*Phys. Lett. B*79, 173 (1978)ADSGoogle Scholar - 39.J. N. Ginocchio, On a generalization of quasispin to onopole and quadrupole pairing,
*Phys. Lett. B*85, 9 (1979)ADSGoogle Scholar - 40.J. N. Ginocchio, A schematic model for monopole and quadrupole pairing in nuclei,
*Ann. Phys.*126(1), 234 (1980)ADSMathSciNetGoogle Scholar - 41.C. L. Wu, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetry model of nuclei: Basis,
*Hamiltonian, and symmetries, Phys. Rev. C*36(3), 1157 (1987)MathSciNetGoogle Scholar - 42.C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model,
*Adv. Nucl. Phys.*21, 227 (1994)Google Scholar - 43.R. Bijker and A. Frank, Collective states in nuclei and many-body random interactions,
*Phys. Rev. C*62(1), 014303 (2000)ADSGoogle Scholar - 44.N. Yoshida, Y. M. Zhao, and A. Arima, Proton-neutron interacting boson model under random two-body interactions,
*Phys. Rev. C*80(6), 064324 (2009)ADSGoogle Scholar - 45.T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Shell model description of interacting bosons,
*Phys. Lett. B*76(2), 139 (1978)ADSGoogle Scholar - 46.C. W. Johnson, Orderly spectra from random interactions: Robust results,
*Rev. Mex. Fis.*45(S2), 25 (1999)Google Scholar - 47.Y. M. Zhao, S. Pittel, R. Bijker, A. Frank, and A. Arima, Generic rotation in a collective SD nucleon-pair subspace,
*Phys. Rev. C*66(4), 041301 (2002)ADSGoogle Scholar - 48.C. A. Mallmann, System of levels in even-even nuclei,
*Phys. Rev. Lett.*2(12), 507 (1959)ADSGoogle Scholar - 49.J. N. Ginocchio and M. W. Kirson, Relationship between the bohr collective hamiltonian and the interacting-boson model,
*Phys. Rev. Lett.*44(26), 1744 (1980)ADSMathSciNetGoogle Scholar - 50.A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model,
*Phys. Rev. Lett.*44(26), 1747 (1980)ADSGoogle Scholar - 51.A. Bohr and B. R. Mottelson, Features of nuclear deformations produced by the alignment of individual particles or pairs,
*Phys. Scr.*22(5), 468 (1980)ADSMathSciNetzbMATHGoogle Scholar - 52.T. Otsuka, A. Arima, and F. Iachello, Nuclear shell model and interacting bosons,
*Nucl. Phys. A*309(1–2), 1 (1978)ADSGoogle Scholar - 53.K. Nomura, N. Shimizu, D. Vretenar, T. Niksic, and T. Otsuka, Robust regularity in g-soft nuclei and its microscopic realization,
*Phys. Rev. Lett.*108(13), 132501 (2012)ADSGoogle Scholar - 54.R. Bijker and A. Frank, Mean-field analysis of interacting boson models with random interactions,
*Phys. Rev. C*64(6), 061303 (2001)ADSGoogle Scholar - 55.F. Iachello, Algebraic methods for molecular rotationvibration spectra,
*Chem. Phys. Lett.*78(3), 581 (1981)ADSMathSciNetGoogle Scholar - 56.F. Iachello and R. D. Levine, Algebraic approach to molecular rotation-vibration spectra (I): Diatomic molecules,
*J. Chem. Phys.*77(6), 3046 (1982)ADSMathSciNetGoogle Scholar - 57.R. Bijker and A. Frank, Regular spectra in the vibron model with random interactions,
*Phys. Rev. C*65(4), 044316 (2002)ADSGoogle Scholar - 58.Y. Lei, Y. M. Zhao, N. Yoshida, and A. Arima, Correlations of excited states for SD bosons in the presence of random interactions,
*Phys. Rev. C*83(4), 044302 (2011)ADSGoogle Scholar - 59.Y. Lu, Y. M. Zhao, N. Yoshida, and A. Arima, Correlations between low-lying yrast states for s d bosons with random interactions,
*Phys. Rev. C*90(6), 064313 (2014)ADSGoogle Scholar - 60.G. J. Fu, Y. M. Zhao, J. L. Ping, and A. Arima, Excited states of many-body systems in the fermion dynamical symmetry model with random interactions,
*Phys. Rev. C*88(3), 037302 (2013)ADSGoogle Scholar - 61.G. J. Fu, Y. M. Zhao, and A. Arima, Regularities of low-lying states with random interactions in the fermion dynamical symmetry model,
*Phys. Rev. C*90(6), 064320 (2014)ADSGoogle Scholar - 62.G. J. Fu, Y. Zhang, Y. M. Zhao, and A. Arima, Collective modes of low-lying states in the interacting boson model with random interactions,
*Phys. Rev. C*98(3), 034301 (2018)Google Scholar - 63.R. F. Casten, edited by F. Iachello, Interacting Bose–Fermi Systems in Nuclei, Plenum, 1981Google Scholar
- 64.H. Ejiri, M. Ishihara, M. Sakai, K. Katori, and T. Inamura, Conversion electrons from (
*α*,*xn*) reactions on Sm isotopes and nuclear structures of Gd nuclei,*J. Phys. Soc. Jpn.*24(6), 1189 (1968)ADSGoogle Scholar