Advertisement

Frontiers of Physics

, 13:136402 | Cite as

Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices

  • Zhi Lin
  • Wanli Liu
Research Article
  • 1 Downloads

Abstract

We clarify some technical issues in the present generalized effective-potential Landau theory (GEPLT) to make the GEPLT more consistent and complete. Utilizing this clarified GEPLT, we analytically study the quantum phase transitions of ultracold Bose gases in bipartite superlattices at zero temperature. The corresponding quantum phase boundaries are analytically calculated up to the third-order hopping, which are in excellent agreement with the quantum Monte Carlo (QMC) simulations.

Keywords

ultracold Bose gases quantum phase transition bipartite superlattice generalized effective-potential Landau theory 

Notes

Acknowledgements

Z. L. acknowledges inspiring discussions with Yan Chen, Ying Jiang and also thanks Tao Wang for providing the QMC data and useful discussions. Z. L. wishes also to thank Dan Bo Zhang for reading and providing useful comments on this manuscript. This work was supported by the State Key Programs of China (Grant Nos. 2017YFA0304204 and 2016YFA0300504), and the National Natural Science Foundation of China (Grant Nos. 11625416, and 11474064).

References

  1. 1.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond, Adv. Phys. 56(2), 243 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N. Goldman, G. Juzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Eckardt, Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89(1), 011004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C. Gross and I. Bloch, Microscopy of many-body states in optical lattices, Annu. Rev. Cold At. Mol. 3, 181 (2015)CrossRefGoogle Scholar
  11. 11.
    M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluidinsulator transition, Phys. Rev. B 40(1), 546 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81(15), 3108 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    C. Trefzger, C. Menotti, B. Capogrosso-Sansone, and M. Lewenstein, Ultracold dipolar gases in optical lattices, J. Phys. At. Mol. Opt. Phys. 44(19), 193001 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Lauer, D. Muth, and M. Fleischhauer, Transportinduced melting of crystals of Rydberg dressed atoms in a one-dimensional lattice, New J. Phys. 14(9), 095009 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature 491(7422), 87 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Safavi-Naini, S. G. Soyler, G. Pupillo, H. R. Sadeghpour, and B. Capogrosso-Sansone, Quantum phases of dipolar bosons in bilayer geometry, New J. Phys. 15(1), 013036 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices, Nat. Phys. 8(1), 71 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett. 89(1), 10010 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: From a quantum liquid to antiferromagnetic order, Phys. Rev. B 86(18), 184435 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Ye, K. Zhang, Y. Li, Y. Chen, and W. Zhang, Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices, Ann. Phys. 328, 103 (2013)ADSCrossRefMATHGoogle Scholar
  24. 24.
    S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King, M. Subbotin, S. L. Rolston, and W. D. Phillips, Patterned loading of a Bose–Einstein condensate into an optical lattice, Phys. Rev. A 67, 051603(R) (2003)Google Scholar
  25. 25.
    J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Direct observation of second-order atom tunnelling, Nature 448(7157), 1029 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch, Counting atoms using interaction blockade in an optical superlattice, Phys. Rev. Lett. 101(9), 090404 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D. S. Lühmann, B. A. Malomed, T. Sowinski, and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Rrog. Phys. 78(6), 066001 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Boninsegni and N. V. Prokof’ev, Supersolids: What and where are they? Rev. Mod. Phys. 84(2), 759 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    A. B. Kuklov and B. V. Svistunov, Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice, Phys. Rev. Lett. 90(10), 100401 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    V. G. Rousseau, D. P. Arovas, M. Rigol, F. Hebert, G. G. Batrouni, and R. T. Scalettar, Exact study of the one-dimensional boson Hubbard model with a superlattice potential, Phys. Rev. B 73(17), 174516 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck, and T. Giamarchi, Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases, Phys. Rev. A 78(2), 023628 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Quantum phases of ultracold bosonic atoms in a one-dimensional optical superlattice, Phys. Rev. A 83(5), 053621 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    P. Buonsante and A. Vezzani, Phase diagram for ultracold bosons in optical lattices and superlattices, Phys. Rev. A 70(3), 033608 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    J. M. Hou, Quantum phases of ultracold bosonic atoms in a two-dimensional optical superlattice, Mod. Phys. Lett. B 23(01), 25 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    B. L. Chen, S. P. Kou, Y. Zhang, and S. Chen, Quantum phases of the Bose–Hubbard model in optical superlattices, Phys. Rev. A 81(5), 053608 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A. Dhar, M. Singh, R. V. Pai, and B. P. Das, Meanfield analysis of quantum phase transitions in a periodic optical superlattice, Phys. Rev. A 84(3), 033631 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    P. Buonsante, V. Penna, and A. Vezzani, Analytical mean-field approach to the phase-diagram of ultracold bosons in optical superlattices, Laser Phys. 15(2), 361 (2005)Google Scholar
  40. 40.
    D. Muth, A. Mering, and M. Fleischhauer, Ultracold bosons in disordered superlattices: Mott insulators induced by tunneling, Phys. Rev. A 77(4), 043618 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    P. Pisarski, R. M. Jones, and R. J. Gooding, Application of a multisite mean-field theory to the disordered Bose–Hubbard model, Phys. Rev. A 83(5), 053608 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    T. McIntosh, P. Pisarski, R. J. Gooding, and E. Zaremba, Multisite mean-field theory for cold bosonic atoms in optical lattices, Phys. Rev. A 86(1), 013623 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    P. Buonsante and A. Vezzani, Cell strong-coupling perturbative approach to the phase diagram of ultracold bosons in optical superlattices, Phys. Rev. A 72(1), 013614 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    P. Buonsante, V. Penna, and A. Vezzani, Phase coherence, visibility, and the superfluid–Mott-insulator transition on one-dimensional optical lattices, Phys. Rev. A 72, 031602(R) (2005)Google Scholar
  45. 45.
    Z. Lin, J. Zhang, and Y. Jiang, Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method, Front. Phys. 13(4), 136401 (2018)CrossRefGoogle Scholar
  46. 46.
    J. Zhang and Y. Jiang, Quantum phase diagrams and time-of-flight pictures of spin-1 Bose systems in honeycomb optical lattices, Laser Phys. 26(9), 095501 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    F. Wei, J. Zhang, and Y. Jiang, Quantum phase diagram and time-of-flight absorption pictures of an ultracold Bose system in a square optical superlattice, Europhys. Lett. 113, 16004 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    T. Wang, X. F. Zhang, S. Eggert, and A. Pelster, Generalized effective-potential Landau theory for bosonic quadratic superlattices, Phys. Rev. A 87(6), 063615 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Z. Lin, J. Zhang, and Y. Jiang, Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices, Phys. Rev. A 85(2), 023619 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    S. Paul and E. Tiesinga, Formation and decay of Bose–Einstein condensates in an excited band of a double-well optical lattice, Phys. Rev. A 88(3), 033615 (2013)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    F. E. A. dos Santos and A. Pelster, Quantum phase diagram of bosons in optical lattices, Phys. Rev. A 79(1), 013614 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    N. Teichmann, D. Hinrichs, M. Holthaus, and A. Eckardt, Process-chain approach to the Bose–Hubbard model: Ground-state properties and phase diagram, Phys. Rev. B 79(22), 224515 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    N. Teichmann, D. Hinrichs, and M. Holthaus, Reference data for phase diagrams of triangular and hexagonal bosonic lattices, Europhys. Lett. 91(1), 10004 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    M. Iskin, Route to supersolidity for the extended Bose–Hubbard model, Phys. Rev. A 83, 051606(R) (2011)Google Scholar
  55. 55.
    M. Di Liberto, T. Comparin, T. Kock, M. Ölschläger, A. Hemmerich, and C. M. Smith, Controlling coherence via tuning of the population imbalance in a bipartite optical lattice, Nat. Commun. 5(1), 5735 (2014)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and State Key Laboratory of Surface PhysicsFudan UniversityShanghaiChina
  2. 2.Shenzhen Institute of Research and InnovationThe University of Hong KongShenzhenChina

Personalised recommendations