Advertisement

Frontiers of Physics in China

, Volume 3, Issue 4, pp 382–413 | Cite as

Accurate vibrational energy spectra and dissociation energies of some diatomic electronic states

  • Wei-guo SunEmail author
  • Xiu-ying LiuEmail author
  • Yu-jie Wang
  • Yan Zhan
  • Qun-chao Fan
Review Article

Abstract

An algebraic method (AM) used to study the full vibrational spectra of diatomic systems, and an analytical formula used to calculate accurate molecular dissociation energies are applied to study the full vibrational spectra and molecular dissociation energies of some electronic states of homonuclear and heteronuclear diatomic molecules and diatomic ions. Studies show that the AM method and the analytical expression are reliable and economical physical methods for studying full vibrational spectra and molecular dissociation energies of diatomic electronic systems theoretically. They are particularly useful for those diatomic systems whose high-lying vibrational energies may not be available.

Keywords

diatomic molecules molecular ions vibrational spectrum dissociation energy algebraic method 

PACS numbers

33.20.Vq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Natural Science Foundation Committee, The Natural Science Academic Development Strategy Investigation Report-Light Physics, Beijing: Science Press, 1994: 23 (in Chinese)Google Scholar
  2. 2.
    L. Zhou, L. J. Teng, and G. H. Wu, The Foundation of Molecular Reaction Dynamics, Chengdu: Press of Chengdu University of Science and Technology, 1990 (in Chinese)Google Scholar
  3. 3.
    M. A. Morrison and W. G. Sun, Computational Methods for Electron-Molecule Collisions, New York: Plenum Press, 1995: 131CrossRefGoogle Scholar
  4. 4.
    K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knöckel, E. Tiemann, H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev. A, 1996, 54(2): R1006ADSCrossRefGoogle Scholar
  5. 5.
    W. C. Stwalley and W. T. Zemke, J. Phys. Chem. Ref. Data, 1993, 22(1): 87ADSCrossRefGoogle Scholar
  6. 6.
    W. Kolos and J. Rychlewski, J. Chem. Phys., 1993, 98(5): 3960ADSCrossRefGoogle Scholar
  7. 7.
    W. G. Sun, S. L. Hou, H. Feng, and W. Y. Ren, J. Mol. Spectrosc., 2002, 215(1): 93ADSCrossRefGoogle Scholar
  8. 8.
    G. Herzberg, Molecular Spectra and Molecular Structure (I)-Spectra of Diatomic Molecules, New York: Van Nostrand Reinhold, 1953Google Scholar
  9. 9.
    J. L. Dunham, Phys. Rev., 1932, 41(6): 721ADSCrossRefGoogle Scholar
  10. 10.
    W. G. Sun, Q. C. Fan, and W. Y. Ren, Sci. China Ser. G, 2007, 50(5): 611CrossRefGoogle Scholar
  11. 11.
    W. G. Sun, X. Y. Liu, Y. J. Wang, Y. Zhan, and Q. C. Fan, Progress in Physics, 2007, 27(2): 151 (in Chinese)Google Scholar
  12. 12.
    R. J. LeRoy and R. B. Bernstein, J. Chem. Phys., 1970, 52(8): 3869ADSCrossRefGoogle Scholar
  13. 13.
    R. J. LeRoy and R. B. Bernstein, J. Mol. Spectrosc., 1971, 37(1): 109ADSCrossRefGoogle Scholar
  14. 14.
    W. Y. Ren, W. G. Sun, S. L. Hou, and H. Feng, Sci. China Ser. G, 2005, 48(4): 385CrossRefGoogle Scholar
  15. 15.
    O. Babaky and K. Hussein, Can. J. Phys., 1989, 67(9): 912ADSCrossRefGoogle Scholar
  16. 16.
    J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, J. Mol. Spectrosc., 1998, 191(2): 248ADSCrossRefGoogle Scholar
  17. 17.
    T. J. Whang, C. C. Tsai, W. C. Stwalley, A. M. Lyyra, and L. Li, J. Mol. Spectrosc., 1993, 160(2): 411ADSCrossRefGoogle Scholar
  18. 18.
    T. J. Whang, W. C. Stwalley, L. Li, and A. M. Lyyra, J. Mol. Spectrosc., 1993, 157(2): 544ADSCrossRefGoogle Scholar
  19. 19.
    L. Li, A. M. Lyyra, and W. C. Stwalley, J. Mol. Spectrosc., 1989, 134(1): 113ADSCrossRefGoogle Scholar
  20. 20.
    P. M. Morse, Phys. Rev., 1929, 34: 57ADSCrossRefGoogle Scholar
  21. 21.
    X. B. Xie, R. W. Field, L. Li, A. M. Lyyra, J. T. Bahns, and W. C. Stwalley, J. Mol. Spectrosc., 1989, 134(1): 119ADSCrossRefGoogle Scholar
  22. 22.
    G. X. Zhao, J. T. Kim, J. T. Bahns, and W. C. Stwalley, J. Mol. Spectrosc., 1997, 184(2): 209ADSCrossRefGoogle Scholar
  23. 23.
    J. T. Kim, H. Wang, C. C. Tsai, J. T. Bahns, W. C. Stwalley, G. Jong, and A. M. Lyyra, J. Chem. Phys., 1995, 103(22): 9891ADSCrossRefGoogle Scholar
  24. 24.
    E. Ahmed, A. M. Lyyra, L. Li, V. S. Ivanov, V. B. Sovkov, and S. Magnier, J. Mol. Spectrosc., 2005, 229(1): 122ADSCrossRefGoogle Scholar
  25. 25.
    C. Amiot, J. Mol. Spectrosc., 1991, 147(2): 370ADSCrossRefGoogle Scholar
  26. 26.
    A. A. Zavitsas, J. Chem. Phys., 2006, 124(14): 144318(1–4)ADSCrossRefGoogle Scholar
  27. 27.
    G. Zhao, W. T. Zemke, J. T. Kim, H. Wang, J. T. Bahns, W. C. Stwalley, L. Li, A. M. Lyyra, and C. Amiot, J. Chem. Phys., 1996, 105(18): 7976ADSCrossRefGoogle Scholar
  28. 28.
    C. Focsa, H. Li, and P. F. Bernath, J. Mol. Spectrosc., 2000, 200(1): 104ADSCrossRefGoogle Scholar
  29. 29.
    C. Linton, F. M. Basis, and J. Verges, J. Mol. Spectrosc., 1990, 142(2): 340ADSCrossRefGoogle Scholar
  30. 30.
    S. K. Hsu, J. J. Wang, P. Yu, C. Y. Wu, and W. T. Luh, J. Phys. Chem. A, 2002, 106(26): 6279CrossRefGoogle Scholar
  31. 31.
    A. Krou-Adohi and C. S. Giraud, J. Mol. Spectrosc., 1998, 190(2): 171ADSCrossRefGoogle Scholar
  32. 32.
    W. J. Stevens, D. D. Konowalow, and L. B. Ratcliff, J. Chem. Phys., 1984, 80(3): 1215ADSCrossRefGoogle Scholar
  33. 33.
    Y. C. Wang, M. Kajitani, S. Kasahara, M. Baba, K. Ishikawa, and H. Kato, J. Chem. Phys., 1991, 95(9): 6229ADSCrossRefGoogle Scholar
  34. 34.
    W. T. Zemke and W. C. Stwalley, J. Chem. Phys., 2001, 114(24): 10811ADSCrossRefGoogle Scholar
  35. 35.
    F. Engelke, G. Ennen, and K. H. Meiwes, Chem. Phys., 1982, 66(3): 391CrossRefGoogle Scholar
  36. 36.
    S. Kasahara, C. Fujiwara, N. Okada, H. Kato, and M. Baba, J. Chem. Phys., 1999, 111(19): 8857ADSCrossRefGoogle Scholar
  37. 37.
    S. C. Yang, J. Chem. Phys., 1982, 77(6): 2884ADSCrossRefGoogle Scholar
  38. 38.
    Y. K. Hsien, S. C. Yang, A. C. Tam, K. K. Verma, and W. C. Stwalley, J. Mol. Spectrosc., 1980, 83(2): 311ADSCrossRefGoogle Scholar
  39. 39.
    J. A. Coxon and M. A. Wickramaaratchi, J. Mol. Spectrosc., 1980, 79(2): 380ADSCrossRefGoogle Scholar
  40. 40.
    V. A. Alekseev, D. W. Setser, and J. Tellinghuisen, J. Mol. Spectrosc., 1999, 195(1): 162ADSCrossRefGoogle Scholar
  41. 41.
    J. A. Coxon and P. G. Hajigeorgiou, Can. J. Phys., 1992, 70(1): 40ADSCrossRefGoogle Scholar
  42. 42.
    K. S. Viswanathan and J. Tellinghuisen, J. Mol. Spectrosc., 1983, 98(1): 185ADSCrossRefGoogle Scholar
  43. 43.
    D. C. Cartwright and P. Hay, J. Chem. Phys., 1987, 114(3): 305Google Scholar
  44. 44.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure II—Constants of Diatomic Molecules, New York: Van Nostrand, 1978Google Scholar
  45. 45.
    J. A. Coxon and S. C. Foster, J. Mol. Spectrosc., 1982, 93(1): 117ADSCrossRefGoogle Scholar
  46. 46.
    I. Schmidt-Mink, W. Müller, and W. Meyer, Chem. Phys., 1985, 92: 263CrossRefGoogle Scholar
  47. 47.
    R. A. Bernheim, L. P. Gold, and T. Tipton, J. Chem. Phys., 1983, 78(6): 3635ADSCrossRefGoogle Scholar
  48. 48.
    J. A. Coxon and M. P. Haley, J. Mol. Spectrosc., 1984, 108(1): 119ADSCrossRefGoogle Scholar
  49. 49.
    P. J. A. Ruttink and L. J. H. Van, J. Chem. Phys., 1981, 74(10): 5785ADSCrossRefGoogle Scholar
  50. 50.
    J. A. Coxon and R. Colin, J. Mol. Spectrosc., 1997, 181(2): 215ADSCrossRefGoogle Scholar
  51. 51.
    E. Laub, I. Mazsa, S. C. Webb, J. LaCivita, I. Prodan, Z. J. Jabbour, R. K. Namiotka, and J. Huennekens, J. Mol. Spectrosc., 1999, 193(2): 376ADSCrossRefGoogle Scholar
  52. 52.
    R. Nadyak, W. Jastrzebski, and P. Kowalczyk, Chem. Phys. Lett., 2002, 353(6): 414ADSCrossRefGoogle Scholar
  53. 53.
    C. Amiot, Mol. Phys., 1986, 58(4): 667ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations