Advertisement

Frontiers of Mathematics in China

, Volume 14, Issue 2, pp 449–474 | Cite as

Low dimensional modules over quantum complete intersections in two variables

  • Hanyang You
  • Pu ZhangEmail author
Research Article
  • 1 Downloads

Abstract

We classify all the indecomposable modules of dimension ⩽ 5 over the quantum exterior algebra kx, y〉/〈x2, y2, xy + qyx〉 in two variables, and all the indecomposable modules of dimension ⩽ 3 over the quantum complete intersection kx, y〉/〈xm, yn, xy + qyx〉 in two variables, where m or n ⩾ 3; by giving explicitly their diagram presentations.

Keywords

Quantum exterior algebra quantum complete intersection diagram presentation of a module 

MSC

16G10 15A75 16G60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors sincerely thank the referees for carefully reading the manuscript and valuable suggestions

References

  1. 1.
    Assem I, Skowroński A. Iterated tileted algebras of type \(\widetilde{A_n}\). Math Z, 1987, 195: 269–290MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avramov L, Gasharov V, Peeva I. Complete intersection dimension. Publ Math Inst Hautes Études Sci, 1997, 86: 67–114MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barot M. Introduction to the Representation Theory of Algebras. Berlin: Springer-Verlag, 2015CrossRefzbMATHGoogle Scholar
  4. 4.
    Bergh P A. Ext-symmetry over quantum complete intersections. Arch Math (Basel), 2009, 92(6): 566–573MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bergh P A, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra Number Theory, 2008, 2(5): 501–522MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bergh P A, Erdmann K. The stable Auslander-Reiten quiver of a quantum complete intersection. Bull Lond Math Soc, 2011, 43(1): 79–90MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bergh P A, Oppermann S. Cohomology of twisted tensor products. J Algebra, 2008, 320(8): 3327–3338MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchweitz R -O, Green E, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12(5–6): 805–816MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Butler M C R, Ringel C M. Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm Algebra, 1987, 15: 145–179MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Donovan P W, Freislich M R. The indecomposable representations of certain groups with dihedral Sylow subgroup. Math Ann, 1978, 238: 207–216MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu S, Schulz R. The existence of bounded infinite DTr-orbits. Proc Amer Math Soc, 1994, 122: 1003–1005MathSciNetzbMATHGoogle Scholar
  12. 12.
    Manin I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier (Grenoble), 1987, 37: 191–205MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marczinzik R. On stable modules that are not Gorenstein projective. arXiv: 1709.01132v3Google Scholar
  14. 14.
    Oppermann S. Hochschild cohomology and homology of quantum complete intersections. Algebra Number Theory, 2010, 4(7): 821–838MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ringel C M. The Liu-Schulz example. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras. CMS Conf Proc, Vol 18. Providence: Amer Math Soc, 1996, 587–600Google Scholar
  16. 16.
    Ringel C M. Exceptional modules are tree modules. Linear Algebra Appl, 1998, 275–276: 471–493MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ringel C M, Zhang P. Gorenstein-projective and semi-Gorenstein-projective modules. arXiv: 1808.01809v2Google Scholar
  18. 18.
    Schulz R. A non-projective module without self-extensions. Arch Math (Basel), 1994, 62(6): 497–500MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Skowroski A, Waschbsch J. Representation-finite biserial algebras. J Reine Angew Math, 1983, 345: 172–181MathSciNetGoogle Scholar
  20. 20.
    Smith S P. Some finite dimensional algebra related to elliptic curves. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras and Related Topics. CMS Conf Proc, Vol 19. Providence: Amer Math Soc, 1996, 315–348Google Scholar
  21. 21.
    Wald B, Waschbüsch J. Tame biserial algebras. J Algebra, 1985, 95: 480–500MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations