Frontiers of Mathematics in China

, Volume 14, Issue 2, pp 435–448 | Cite as

Spectral method for multidimensional Volterra integral equation with regular kernel

  • Yunxia Wei
  • Yanping ChenEmail author
  • Xiulian Shi
  • Yuanyuan Zhang
Research Article


This paper is concerned with obtaining an approximate solution for a linear multidimensional Volterra integral equation with a regular kernel. We choose the Gauss points associated with the multidimensional Jacobi weight function \(\omega(x) = \prod{_{i=1}^d}(1 - x_i)^\alpha(1 + x_i)^\beta, -1 <\alpha,\beta < \frac{1}{d} - \frac{1}{2}\) (d denotes the space dimensions) as the collocation points. We demonstrate that the errors of approximate solution decay exponentially. Numerical results are presented to demonstrate the effectiveness of the Jacobi spectral collocation method.


Multidimensional Volterra integral equation Jacobi collocation discretization multidimensional Gauss quadrature formula 


65R20 45J05 65N12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11671157, 11826212).


  1. 1.
    Aghazade N, Khajehnasiri A A. Solving nonlinear two-dimensional Volterra integro-differential equations by block-pulse functions. Math Sci, 2013, 7: 1–6MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge: Cambridge Univ Press, 2004CrossRefzbMATHGoogle Scholar
  3. 3.
    Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Berlin: Springer-Verlag, 2006zbMATHGoogle Scholar
  4. 4.
    Chen Y, Li X, Tang T. A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J Comput Math, 2013, 31: 47–56MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen Y, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J Comput Appl Math, 2009, 233: 938–950MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen Y, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comp, 2010, 79: 147–167MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. 2nd ed. Appl Math Sci, Vol 93. Heidelberg: Springer-Verlag, 1998Google Scholar
  8. 8.
    Darania P, Shali J A, Ivaz K. New computational method for solving some 2-dimensional nonlinear Volterra integro-differential equations. Numer Algorithms, 2011, 57: 125–147MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fedotov A I. Lebesgue constant estimation in multidimensional Sobolev space. J Math, 2004, 14: 25–32MathSciNetzbMATHGoogle Scholar
  10. 10.
    Headley V B. A multidimensional nonlinear Gronwall inequality. J Math Anal Appl, 1974, 47: 250–255MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mckee S, Tang T, Diogo T. An Euler-type method for two-dimensional Volterra integral equations of the first kind. IMA J Numer Anal, 2000, 20: 423–440MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mirzaee F, Hadadiyan E, Bimesl S. Numerical solution for three-dimensional non-linear mixed Volterra-Fredholm integral equations via three-dimensional block-pulse functions. Appl Math Comput, 2014, 237: 168–175MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nemati S, Lima P M, Ordokhani Y. Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials. J Comput Appl Math, 2013, 242: 53–69MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nevai P. Mean convergence of Lagrange interpolation. Trans Amer Math Soc, 1984, 282: 669–698MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ragozin D L. Polynomial approximation on compact manifolds and homogeneous spaces. Trans Amer Math Soc, 1970, 150: 41–53MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ragozin D L. Constructive polynomial approximation on spheres and projective spaces. Trans Amer Math Soc, 1971, 162: 157–170MathSciNetzbMATHGoogle Scholar
  17. 17.
    Shen J, Tang T. Spectral and High-order Methods with Applications. Beijing: Science Press, 2006zbMATHGoogle Scholar
  18. 18.
    Tang T, Xu X, Chen J. On spectral methods for Volterra integral equations and the convergence analysis. J Comput Math, 2008, 26: 825–837MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wei Y X, Chen Y. Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equation. J Sci Comput, 2012, 53: 672–688MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wei Y X, Chen Y. Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation. Appl Numer Math, 2014, 81: 15–29MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yunxia Wei
    • 1
  • Yanping Chen
    • 2
    Email author
  • Xiulian Shi
    • 3
  • Yuanyuan Zhang
    • 4
  1. 1.Zhejiang University of Water Resources and Electric PowerHangzhouChina
  2. 2.School of Mathematical SciencesSouth China Normal UniversityGuangzhouChina
  3. 3.School of Mathematics and StatisticsZhaoqing UniversityZhaoqingChina
  4. 4.Department of Mathematics and Information ScienceYantai UniversityYantaiChina

Personalised recommendations