Advertisement

Frontiers of Mathematics in China

, Volume 13, Issue 6, pp 1341–1353 | Cite as

Sharp bounds for Hardy type operators on higher-dimensional product spaces

  • Qianjun HeEmail author
  • Xiang Li
  • Dunyan Yan
Research Article
  • 8 Downloads

Abstract

We investigate a class of fractional Hardy type operators \({\mathscr{H}_{{\beta _1},{\beta _2}, \ldots ,{\beta _m}}}\) defined on higher-dimensional product spaces \({\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}} \times \cdots \times {\mathbb{R}^{{n_m}}}\) and use novel methods to obtain their sharp bounds. In particular, we optimize the result due to S. M. Wang, S. Z. Lu, and D. Y. Yan [Sci. China Math., 2012, 55(12): 2469–2480].

Keywords

Hardy type operators power weight sharp bounds 

MSC

42B20 42B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11471309, 11561062, 11871452).

References

  1. 1.
    Barza S, Persson L E, Samko N. Some new sharp limit Hardy-type inequalities via convexity. J Inequal Appl, 2014, 2014(1): 6–16MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46CrossRefzbMATHGoogle Scholar
  3. 3.
    Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13(1): 1–24MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math, 2015, 27(5): 2825–2851MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6: 314–317MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hardy G H, Littlewood J E, Pólya G. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952zbMATHGoogle Scholar
  8. 8.
    Kufner A, Persson L-E. Weighted Inequalities of Hardy Type. River Edge: World Scientific Publishing Co Inc, 2003CrossRefzbMATHGoogle Scholar
  9. 9.
    Lu S Z, Yan D Y, Zhao F Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(1): 148–159MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lu S Z, Zhao F Y. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015, 18(1): 233–240MathSciNetzbMATHGoogle Scholar
  11. 11.
    Muckenhoupt B. Hardy inequality with weights. Studia Math, 1972, 44: 31–38MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Persson L E, Samko S G. A note on the best constants in some Hardy inequalities. J Math Inequal, 2015, 9(2): 437–447MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sawyer E. Weighted inequalities for the two-dimensional Hardy operators. Studia Math, 1985, 82: 1–6MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy’s inequality with power weight on n-dimensional product spaces. Sci China Math, 2012, 55(12): 2469–2480MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40(2): 635–654MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu Q Y, Fu Z W. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J Math Anal, 2018, 12(4): 909–934MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations