Advertisement

Frontiers of Mathematics in China

, Volume 13, Issue 6, pp 1397–1426 | Cite as

Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets

  • Changli Liu
  • Ren-Cang LiEmail author
Research Article
  • 5 Downloads

Abstract

A detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEPs)
$$P(\lambda ) \equiv (\sum\limits_{\ell = 0}^d {{A_\ell }{\lambda ^\ell }} )x = 0,{A_{d - \ell }} = \varepsilon A_\ell ^*,\ell = 0,1...,\left\lfloor {\frac{d}{2}} \right\rfloor,$$
for an approximate eigentriplet is performed, where * is one of the two actions: transpose and conjugate transpose, and ε ∈ {±1} The analysis is concerned with estimating the smallest perturbation to P(λ); while preserving the respective palindromic structure, such that the given approximate eigentriplet is an exact eigentriplet of the perturbed PPEP. Previously, R. Li, W. Lin, and C. Wang [Numer. Math., 2010, 116(1): 95[122] had only considered the case of an approximate eigenpair for PPEP but commented that attempt for an approximate eigentriplet was unsuccessful. Indeed, the latter case is much more complicated. We provide computable upper bounds for the structured backward errors. Our main results in this paper are several informative and very sharp upper bounds that are capable of revealing distinctive features of PPEP from general polynomial eigenvalue problems (PEPs). In particular, they reveal the critical cases in which there is no structured backward perturbation such that the given approximate eigentriplet becomes an exact one of any perturbed PPEP, unless further additional conditions are imposed. These critical cases turn out to the same as those from the earlier studies on an approximate eigenpair.

Keywords

Palindromic polynomial eigenvalue problem (PPEP) eigentriplet structured backward error error bound 

MSC

65F15 65G99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Changli Liu was supported in part by the International Visiting Program for Excellent Young Scholars of Sichuan University and the National Natural Science Foundation of China (Grant No. 11501388). Ren-Cang Li was supported in part by the Natural Science Foundation (Grants DMS-1317330, DMS-1719620, and CCF-1527104) and the Natural Science Foundation of China (Grant No. 11428104).

References

  1. 1.
    Byers R, Mackey D S, Mehrmann V, Xu H. Symplectic, BVD, and palindromic approaches to discrete-time control problems. Technical Report, Preprint 14–2008, Institute of Mathematics, Technische Universität Berlin, 2008Google Scholar
  2. 2.
    Chu E K-W, Hwang T M, Lin W W, Wu C T. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J Comput Appl Math, 2008, 219: 237–252MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Guo C, Lin W W. Solving a structured quadratic eigenvalue problem by a structurepreserving doubling algorithm. SIAM J Matrix Anal Appl, 2010, 31(5): 2784–2801MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Higham N J, Tisseur F, van Dooren P. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl, 2002, 351–352: 455–474MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hilliges A. Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendungen in der Schiendynamik. Master’s Thesis, Technical University Berlin, Germany, July 2004Google Scholar
  6. 6.
    Hilliges A, Mehl C, Mehrmann V. On the solution of palindramic eigenvalue problems. In: Proceedings of 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, Finland, 2004Google Scholar
  7. 7.
    Huang T M, Li T, Lin W W, Wu C T. Numerical studies on structure-preserving algorithms for surface acoustic wave simulations. J Comput Appl Math, 2013, 244(1): 140–154MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang T M, Lin W W, Qian J. Numerically stable, structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains. SIAM J Matrix Anal Appl, 2009, 30(4): 1566–1592CrossRefzbMATHGoogle Scholar
  9. 9.
    Huang T M, Lin W W, Su W S. Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree. Numer Math, 2011, 118(4): 713–735MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ipsen I C F. Accurate eigenvalues for fast trains. SIAM News, 2004, 37(9)Google Scholar
  11. 11.
    Li R C, Lin W W, Wang C S. Structured backward error for palindromic polynomial eigenvalue problems. Numer Math, 2010, 116(1): 95–122MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu C, Li R C. Structured backward error for palindromic polynomial eigenvalue problems, ii: Approximate eigentriplets. Technical Report 2016–12, Dept Math, Univ of Texas at Arlington, December 2016. https://doi.org/www.uta.edu/math/preprint/ Google Scholar
  13. 13.
    Liu X G, Wang Z X. A note on the backward errors for Hermite eigenvalue problems. Appl Math Comput, 2005, 165(2): 405–417MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lu L, Wang T, Kuo Y C, Li R C, Lin W W. A fast algorithm for fast train palindromic quadratic eigenvalue problems. SIAM J Sci Comput, 2016, 38(6): 3410–3429MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lu L, Yuan F, Li R C. A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem. Numer Linear Algebra Appl, 2015, 22: 393–409MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mackey D S, Mackey N, Mehl C, Mehrmann V. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J Matrix Anal Appl, 2006, 28(4): 1029–1051MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schröder C. URV decomposition based structured methods for palindromic and even eigenvalue problems. Technical Report, Preprint 375, TU Berlin, Matheon, Germany, 2007Google Scholar
  18. 18.
    Schröder C. A QR-like algorithm for the palindromic eigenvalue problem. Technical Report, Preprint 388, TU Berlin, Matheon, Germany, 2007Google Scholar
  19. 19.
    Tisseur F. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl, 2000, 309(1–3): 339–361MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xu H. On equivalence of pencils from discrete-time and continuous-time control. Linear Algebra Appl, 2006, 414: 97–124MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zaglmayr S, Schöberl J, Langer U. Eigenvalue problems in surface acoustic wave filter simulations. In: Bucchianico A, Mattheij R M M, Peletier M A, eds. Progress in Industrial Mathematics at ECMI 2004. Math Ind, Vol 8. Berlin: Springer, 2006, 74–98Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsSichuan UniversityChengduChina
  2. 2.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations