Frontiers of Mathematics in China

, Volume 13, Issue 6, pp 1355–1368 | Cite as

Exponential sums involving automorphic forms for GL(3) over arithmetic progressions

  • Xiaoguang HeEmail author
Research Article


Let f be a Hecke-Maass cusp form for SL(3,ℤ) with Fourier coeffcients Af (m, n), and let ϕ(x) be a C-function supported on [1, 2] with derivatives bounded by ϕ(j)(x)≪j 1: We prove an asymptotic formula for the nonlinear \(\Sigma_{n\equiv l \rm{mod} \it{q}}\)Af (m, n)ϕ(n/X)e(3(kn)1/3/q), where e(z) = e2πiz and k ∈ℤ+.


Automorphic forms for GL(3) exponential sum arithmetic progression 


11L05 11L07 11F30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank Professor Qingfeng Sun for his valuable advice and constant encouragement.


  1. 1.
    Goldfeld D. Automorphic forms and L-functions for the group GL(n, ℝ). Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006Google Scholar
  2. 2.
    Goldfeld D, Li X Q. Voronoi formulas on GL(n). Int Math Res Not IMRN, 2006, Art ID: 86295 (25pp)Google Scholar
  3. 3.
    Goldfeld D, Li X Q. The Voronoi formula for GL(n, ℝ). Int Math Res Not IMRN, 2008, (9): rnm144 (39pp)MathSciNetGoogle Scholar
  4. 4.
    Iwaniec H, Luo W Z, Sarnak P. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55–131MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kaczorowski J, Perelli A. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315–341MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J Amer Math Soc, 2003, 16: 139–183MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li X Q. The central value of the Rankin-Selberg L-functions. Geom Funct Anal, 2009, 18(5): 1660–1695MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Miller S D, Schmid W. Automorphic distributions, L-functions, and Voronoi summation for GL(3). Ann of Math (2), 2006, 164(2): 423–488MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ren X M, Ye Y B. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463–2472MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ren X M, Ye Y B. Asymptotic Voronoi’s summation formulas and their duality for SL3(ℤ): In: Kanemitsu S, Li H-Z, Liu J -Y, eds. Number Theory: Arithmetic in Shangri-La. Proceedings of the 6th China-Japan Seminar. Series on Number Theory and Its Applications, Vol 8. Singapore: World Scientific, 2013, 213–236CrossRefGoogle Scholar
  11. 11.
    Ren X M, Ye Y B. Resonance of automorphic forms for GL(3). Trans Amer Math Soc, 2015, 367(3): 2137–2157MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sarnak P. Notes on the generalized Ramanujan conjectures. In: Arthur J, Ellwood D, Kottwitz R, eds. Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math Proc, Vol 4. Providence: Amer Math Soc, 2005, 659–685Google Scholar
  13. 13.
    Sun Q F, Wu Y Y. Exponential sums involving Maass forms. Front Math China, 2014, 9(6): 1349–1366MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yan X F. On some exponential sums involving Maass forms over arithmetic progressions. J Number Theory, 2016, 160: 44–59MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina

Personalised recommendations