Experimental investigation on the grain-scale compression behavior of loose wet granular material

  • Vinh-Du Than
  • Patrick Aimedieu
  • Jean-Michel Pereira
  • Jean-Noël Roux
  • Anh Minh TangEmail author
Research Paper


The behavior of model granular materials (glass beads) wetted by a small quantity of liquid forming capillary bridges is studied by one-dimensional compression test combined with X-ray computed tomography (XRCT) observation. Special attention is paid to obtain very loose initial states (initial void ratio of about 2.30) stabilized by capillary cohesion. XRCT-based analyses involve spherical particle detection adapted to relatively low-resolution images, which enable heterogeneities to be visualized and microstructural information to be collected. This study on an ideal material provides an insight into the macroscopic compression behavior of wet granular materials based on the microstructural change, such as pore distance distribution, coordination number of contacts, coordination number of neighbors and number of contacts per grain.


Grain-scale analysis Microstructure One-dimensional compression Wet granular material X-ray computed tomography 

List of symbols


Size of standard volume


Size of extended volume

\( \left\langle d \right\rangle \)

Average diameter


Minimum diameter


Maximum diameter


Initial void ratio


Void ratio


Extended volume


Signature curve


Initial solid fraction


Radial distribution function

i, j, k

Voxel indices

iC, jC, kC

Center position of detected sphere

I(i, j, k)

Intensity at voxel (i, j, k)

∇I(i, j, k)

Gradient vector at voxel (i, j, k)


Number of particles


Number of pairs in contacts


Average number density of particles

q(i, j, k)

Vector from (iC, jC, kC) to voxel (i, j, k)


Radii of particles/radial distance


Standard volume


Step of scan (S1, S2, S3, S4)


Total coordination number


Coordination number of close neighbors



This work is part of the first author’s PhD thesis funded by the Ministry of Education and Training of Vietnam. The authors are grateful to Dr. Michel Bornert (Laboratoire Navier) for his useful suggestions and Mr. Jean-Marc Plessier (Laboratoire Navier) for the scanning electronic microscopic image of a glass bead.


  1. 1.
    Agnolin I, Roux J-N (2007) Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys Rev E 76:061302. MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Raoush R (2007) Microstructure characterization of granular materials. Phys A Stat Mech Appl 377:545–558. CrossRefGoogle Scholar
  3. 3.
    Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol 300:44–64. CrossRefGoogle Scholar
  4. 4.
    Andò E, Bésuelle P, Hall Sa et al (2012) Experimental micromechanics: grain-scale observation of sand deformation. Géotech Lett 2:107–112. CrossRefGoogle Scholar
  5. 5.
    Aste T (2005) Variations around disordered close packing. J Phys Condens Matter 17:S2361–S2390. CrossRefGoogle Scholar
  6. 6.
    Aste T, Saadatfar M, Sakellariou A, Senden TJ (2004) Investigating the geometrical structure of disordered sphere packings. Phys A Stat Mech Appl 339:16–23. MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aste T, Saadatfar M, Senden T (2005) Geometrical structure of disordered sphere packings. Phys Rev E 71:1–15. CrossRefGoogle Scholar
  8. 8.
    Aste T, Saadatfar M, Senden TJ (2006) Local and global relations between the number of contacts and density in monodisperse sphere packs. J Stat Mech Theory Exp 2006:P07010. CrossRefGoogle Scholar
  9. 9.
    Bruchon J-F, Pereira J-M, Vandamme M et al (2013) Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT. Granul Matter 15:783–800. CrossRefGoogle Scholar
  10. 10.
    Bruchon J-F, Pereira J-M, Vandamme M et al (2013) X-ray microtomography characterisation of the changes in statistical homogeneity of an unsaturated sand during imbibition. Géotech Lett 3:84–88. CrossRefGoogle Scholar
  11. 11.
    Chalak C, Chareyre B, Nikooee E, Darve F (2017) Partially saturated media: from DEM simulation to thermodynamic interpretation. Eur J Environ Civ Eng 21:798–820. CrossRefGoogle Scholar
  12. 12.
    Dadda A, Geindreau C, Emeriault F et al (2019) Characterization of contact properties in biocemented sand using 3D X-ray micro-tomography. Acta Geotech 14:597–613. CrossRefGoogle Scholar
  13. 13.
    Delenne J-Y, El Youssoufi MS, Cherblanc F, Bénet J-C (2004) Mechanical behaviour and failure of cohesive granular materials. Int J Numer Anal Methods Geomech 28:1577–1594. CrossRefzbMATHGoogle Scholar
  14. 14.
    Delenne J-Y, Soulié F, El Youssoufi MS, Radjai F (2011) From liquid to solid bonding in cohesive granular media. Mech Mater 43:529–537. CrossRefGoogle Scholar
  15. 15.
    Delenne J-Y, Richefeu V, Radjai F (2015) Liquid clustering and capillary pressure in granular media. J Fluid Mech 762:R5-1–R5-10. MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ding W, Howard AJ, Peri MDM, Cetinkaya C (2007) Rolling resistance moment of microspheres on surfaces: contact measurements. Philos Mag 87:5685–5696. CrossRefGoogle Scholar
  17. 17.
    Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E Stat Nonlinear Soft Matter Phys 71:1–14. MathSciNetCrossRefGoogle Scholar
  18. 18.
    Farber L, Tardos G, Michaels JN (2003) Use of X-ray tomography to study the porosity and morphology of granules. Powder Technol 132:57–63. CrossRefGoogle Scholar
  19. 19.
    Fournier Z, Geromichalos D, Herminghaus S et al (2005) Mechanical properties of wet granular materials. J Phys Condens Matter 17:477–502. CrossRefGoogle Scholar
  20. 20.
    Fu X, Dutt M, Bentham AC et al (2006) Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technol 167:134–140. CrossRefGoogle Scholar
  21. 21.
    Gilabert F, Roux J-N, Castellanos A (2007) Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys Rev E 75:011303. MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gilabert F, Roux J-N, Castellanos A (2008) Computer simulation of model cohesive powders: plastic consolidation, structural changes, and elasticity under isotropic loads. Phys Rev E 78:031305. CrossRefGoogle Scholar
  23. 23.
    Golchert DJ, Moreno R, Ghadiri M et al (2004) Application of X-ray microtomography to numerical simulations of agglomerate breakage by distinct element method. Adv Powder Technol 15:447–457. CrossRefGoogle Scholar
  24. 24.
    Illingworth J, Kittler J (1987) The adaptive hough transform. IEEE Trans Pattern Anal Mach Intell PAMI 9:690–698. CrossRefGoogle Scholar
  25. 25.
    Jiang M, Hu H, Liu F (2012) Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests. Can Geotech J 1157:1147–1157. CrossRefGoogle Scholar
  26. 26.
    Kadau D, Bartels G, Brendel L, Wolf DE (2003) Pore stabilization in cohesive granular systems. Phase Transit 76:315–331. CrossRefGoogle Scholar
  27. 27.
    Khaddour G (2005) Multi-scale characterization of the hydro-mechanical behavior of unsaturated sand: water retention and triaxial responses. Université Grenoble Alpes, FranceGoogle Scholar
  28. 28.
    Khaddour G, Riedel I, Andò E et al (2018) Grain-scale characterization of water retention behaviour of sand using X-ray CT. Acta Geotech 13:497–512. CrossRefGoogle Scholar
  29. 29.
    Khamseh S, Roux J-N, Chevoir F (2015) Flow of wet granular materials: a numerical study. Phys Rev E 92:022201–022219. CrossRefGoogle Scholar
  30. 30.
    Lai Z, Chen Q (2019) Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method. Acta Geotech. Google Scholar
  31. 31.
    Lame O, Bellet D, Di Michiel M, Bouvard D (2003) In situ microtomography investigation of metal powder compacts during sintering. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 200:287–294. CrossRefGoogle Scholar
  32. 32.
    Marmottant A, Salvo L, Martin CL, Mortensen A (2008) Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J Eur Ceram Soc 28:2441–2449. CrossRefGoogle Scholar
  33. 33.
    Mason TG, Levine AJ, Ertaş D, Halsey TC (1999) Critical angle of wet sandpiles. Phys Rev E 60:R5044–R5047CrossRefGoogle Scholar
  34. 34.
    Melnikov K, Wittel FK, Herrmann HJ (2016) Micro-mechanical failure analysis of wet granular matter. Acta Geotech 11:539–548CrossRefGoogle Scholar
  35. 35.
    Mitarai N, Nori F (2006) Wet granular materials. Adv Phys 00:1–50CrossRefGoogle Scholar
  36. 36.
    Mitchell JK, Soga K (1976) Fundamentals of soil behavior. Wiley, LondonGoogle Scholar
  37. 37.
    Moreno-Atanasio R, Williams RA, Jia X (2010) Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8:81–99. CrossRefGoogle Scholar
  38. 38.
    Moscariello M, Cuomo S, Salager S (2018) Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale. Acta Geotech 13:117–133. CrossRefGoogle Scholar
  39. 39.
    Munõz-Castelblanco J, Delage P, Pereira J-M, Cui YJ (2011) Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Géotech Lett 1:17–22. CrossRefGoogle Scholar
  40. 40.
    Newitt DM, Conway-Jones JM (1958) A contribution to the theory and practice of granulation. Trans Inst Chem Eng 36:422Google Scholar
  41. 41.
    Peng T, Balijepalli A, Gupta SK, LeBrun T (2007) Algorithms for on-line monitoring of micro spheres in an optical tweezers-based assembly cell. J Comput Inf Sci Eng 7:330. CrossRefGoogle Scholar
  42. 42.
    Pierrat P, Caram HS (1997) Tensile strength of wet granular materials. Powder Technol 91:83–93. CrossRefGoogle Scholar
  43. 43.
    Richefeu V, Radjaï F, El Youssoufi MS (2006) Stress transmission in wet granular materials. Eur Phys J E 21:359–369CrossRefGoogle Scholar
  44. 44.
    Richefeu V, El Youssoufi MS, Azéma E, Radjaï F (2009) Force transmission in dry and wet granular media. Powder Technol 190:258–263. CrossRefGoogle Scholar
  45. 45.
    Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632. CrossRefGoogle Scholar
  46. 46.
    Rognon PG, Roux J-N, Wolf D et al (2006) Rheophysics of cohesive granular materials. Europhys Lett 74:644–650. CrossRefGoogle Scholar
  47. 47.
    Santamarina JC (2001) Soil behavior at the microscale: particle forces. In: Ladd CC (ed) Soil behavior and soft ground construction. MIT Press, Cambridge, pp 1–32Google Scholar
  48. 48.
    Scheel M, Seemann R, Brinkmann M et al (2008) Morphological clues to wet granular pile stability. Nat Mater 7:189CrossRefGoogle Scholar
  49. 49.
    Scholtès L, Chareyre B, Nicot F, Darve F (2009) Micromechanics of granular materials with capillary effects. Int J Eng Sci 47:1460–1471. MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Sweijen T, Nikooee E, Hassanizadeh SM, Chareyre B (2016) The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method. Transp Porous Media 113:207–226. MathSciNetCrossRefGoogle Scholar
  51. 51.
    Sweijen T, Chareyre B, Hassanizadeh SM, Karadimitriou NK (2017) Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technol 318:411–422. CrossRefGoogle Scholar
  52. 52.
    Tang A-M, Cui Y-J, Eslami J, Défossez P (2009) Analysing the form of the confined uniaxial compression curve of various soils. Geoderma 148:282–290. CrossRefGoogle Scholar
  53. 53.
    Tengattini A, Andò E (2015) Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D. Meas Sci Technol 26:095606. CrossRefGoogle Scholar
  54. 54.
    Than V-D, Khamseh S, Tang A-M et al (2016) Basic mechanical properties of wet granular materials: a DEM study. J Eng Mech. Google Scholar
  55. 55.
    Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRefzbMATHGoogle Scholar
  56. 56.
    Wang Y-H, Leung S-C (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45:29–44. CrossRefGoogle Scholar
  57. 57.
    Wang YH, Leung SC (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134:992–1004CrossRefGoogle Scholar
  58. 58.
    Wang J-P, Li X, Yu H-S (2018) A micro–macro investigation of the capillary strengthening effect in wet granular materials. Acta Geotech. Google Scholar
  59. 59.
    Wang JP, Lambert P, De Kock T et al (2019) Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography. Acta Geotech 1:5. Google Scholar
  60. 60.
    Wiebicke M, Andò E, Herle I, Viggiani G (2017) On the metrology of interparticle contacts in sand from X-ray tomography images. Meas Sci Technol 28:124007CrossRefGoogle Scholar
  61. 61.
    Williams RA, Jia X (2003) Tomographic imaging of particulate systems. Adv Powder Technol 14:1–16. CrossRefGoogle Scholar
  62. 62.
    Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  63. 63.
    Xie L, Cianciolo RE, Hulette B et al (2012) Magnetic resonance histology of age-related nephropathy in the Sprague Dawley rat. Toxicol Pathol 40:764–778. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRSUniversité Paris-EstMarne-la-Vallée Cedex 2France
  2. 2.Department of Civil EngineeringThe University of Danang, University of Technology and EducationDa Nang CityVietnam

Personalised recommendations