Advertisement

On the seismic response of a propped r.c. diaphragm wall in a saturated clay

  • Elisabetta CattoniEmail author
  • Claudio Tamagnini
Research Paper

Abstract

A series of nonlinear dynamic FE simulations have been performed to investigate the seismic performance of a flexible propped retaining wall in a saturated clay. The simulations have been carried out considering different acceleration time histories at the bedrock and two different inelastic soil models: the classical elastoplastic Modified Cam Clay model and the advanced hypoplastic model for clays proposed by Mašín (Int J Numer Anal Methods Geomech 29:311–336, 2005) equipped with the intergranular strains extension. The results of the simulations highlight the major role played by the choice of the constitutive model for the soil on the predicted seismic response, in terms of predicted wall displacements and structural loads. In particular, the results show that a key role is played by the model ability to correctly reproduce soil dilatancy as a function of the current stress state and loading history. This has a major impact on the inelastic volumetric deformations accumulated during the undrained seismic shearing and on the development of excess pore water pressures around the excavations.

Keywords

Diaphragm walls Finite element modeling Hypoplasticity Performance-based design 

Notes

References

  1. 1.
    Alyami M, Wilkinson S.M, Rouainia M, Cai F (2007) Simulation of seismic behaviour of gravity quay wall using a generalized plasticity model. In: Proceedings of the 4th international conference on earthquake geotechnical engineering, Thessaloniki, GreeceGoogle Scholar
  2. 2.
    Basha BM, Sivakumar Babu G (2010) Seismic rotational displacements of gravity walls by pseudodynamic method with curved rupture surface. Int J Geomech ASCE 10(3):93–105CrossRefGoogle Scholar
  3. 3.
    Butterfield RA (1979) A natural compression law for soils. Géotechnique 29(4):469–480CrossRefGoogle Scholar
  4. 4.
    Callisto L, Soccodato FM (2010) Seismic design of flexible cantilevered retaining walls. J Geotech Geoenviron Eng 136(2):344–354CrossRefGoogle Scholar
  5. 5.
    Cattoni E, Tamagnini C (2018) Critical accelerations for propped diaphragm walls in sand by finite element limit analysis. J Earthq Eng.  https://doi.org/10.1080/13632469.2018.1452805
  6. 6.
    Clough G.W, O’Rourke T.D (1990) Construction induced movements of insitu walls. In: Design and performance of earth retaining structures, pp. 439–470. ASCEGoogle Scholar
  7. 7.
    Clough RW, Penzien J (1993) Dynamics of structures. McGraw-Hill, New York, p 634zbMATHGoogle Scholar
  8. 8.
    Conti R, Madabhushi SPG, Viggiani GMB (2012) On the behaviour of flexible retaining walls under seismic actions. Géotechnique 62(12):1081–1094CrossRefGoogle Scholar
  9. 9.
    Conti R, Viggiani GMB (2013) A new limit equilibrium method for the pseudostatic design of embedded cantilevered retaining walls. Soil Dyn Earthq Eng 50:143–150CrossRefGoogle Scholar
  10. 10.
    Conti R, Viggiani GMB, Burali d’Arezzo F (2014) Some remarks on the seismic behaviour of embedded cantilevered retaining walls. Géotechnique 64(1):40–50CrossRefGoogle Scholar
  11. 11.
    Conti R, Viggiani GMB, Cavallo S (2013) A two-rigid block model for sliding gravity retaining walls. Soil Dyn Earthq Eng 55:33–43CrossRefGoogle Scholar
  12. 12.
    Desai C, Zaman M, Lightner J, Siriwardane H (1984) Thin-layer element for interfaces and joints. Int J Numer Anal Methods Geomech 8(1):19–43CrossRefGoogle Scholar
  13. 13.
    Elms D.G, Richards R (1990) Seismic design of retaining walls. In: Design and performance of earth retaining structures, pp 854–871. ASCEGoogle Scholar
  14. 14.
    Finno RJ, Clough GW (1985) Evaluation of soil response to EPB shield tunnelling. J Geotech Eng 111:155–173CrossRefGoogle Scholar
  15. 15.
    Hashiguchi K, Ueno M (1977) Elasto–plastic constitutive laws of granular materials. In: Murayama S, Schofield AN (eds) IX int. conf. soil mech. found. engng., specialty session 9. Balkema, Rotterdam, Tokio, JapanGoogle Scholar
  16. 16.
    Iai S, Ichii K, Liu H, Morita T (1998) Effective stress analyses of port structures. Soils Found 38:97–114CrossRefGoogle Scholar
  17. 17.
    Ishibashi I, Zhang X (1993) Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found 33(1):182–191CrossRefGoogle Scholar
  18. 18.
    Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div, vol 99 (Tech Rpt)Google Scholar
  19. 19.
    Lanzo G, Pagliaroli A, D’Elia B (2004) Influenza della modellazione di Rayleigh dello smorzamento viscoso nelle analisi di risposta sismica locale. In: Proc. XI italian national conference: “L’ingegneria Sismica in Italia” (in Italian)Google Scholar
  20. 20.
    Mašín D (2005) A hypoplastic costitutive model for clay. Int J Numer Anal Methods Geomech 29:311–336CrossRefzbMATHGoogle Scholar
  21. 21.
    Mašín D, Tamagnini C, Viggiani G, Costanzo D (2006) Directional response of a reconstituted fine–grained soil. Part II: performance of different constitutive models. Int J Numer Anal Methods Geomech 30(13):1303–1336CrossRefzbMATHGoogle Scholar
  22. 22.
    Mayne PW, Kulhawy FH (1982) \(K_0-\rm OCR\) relationships in soil. ASCE, J Soil Mech Found Div 108(6):851–872Google Scholar
  23. 23.
    Ministero delle Infrastrutture: Decreto del 14/01/2008–Norme Tecniche per le Costruzioni. Gazzetta Ufficiale della Repubblica Italiana (in Italian) (2008)Google Scholar
  24. 24.
    Miriano C (2008) Modellazione numerica dei movimenti indotti dallo scavo di gallerie superficiali in terreni a grana fine. Ph.D. thesis, Università degli Studi di Perugia—Dottorato in Ingegneria CivileGoogle Scholar
  25. 25.
    Miriano C, Cattoni E, Tamagnini C (2016) Advanced numerical modeling of seismic response of a propped rc diaphragm wall. Acta Geotech 11(1):161–175CrossRefGoogle Scholar
  26. 26.
    Newmark NM (1965) Effects of earthquakes on dams and embankments. Géotechnique 15(2):139–160CrossRefGoogle Scholar
  27. 27.
    Niemunis A (2002) Extended hypoplastic model for soils. Ph.D. thesis, Ruhr–University, BochumGoogle Scholar
  28. 28.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2:279–299CrossRefGoogle Scholar
  29. 29.
    Papadimitriou AG, Bouckovalas GD (2002) Plasticity model for sand under small and large cyclic strains: a multiaxial formulation. Soil Dyn Earthq Eng 22:191–204CrossRefGoogle Scholar
  30. 30.
    Richards R, Elms DG (1992) Seismic passive resistance of tied-back walls. J Geotech Eng 118(7):996–1011CrossRefGoogle Scholar
  31. 31.
    Roddeman D (2015) Tochnog Professional users manualGoogle Scholar
  32. 32.
    Roscoe KH, Burland JB (1968) On the generalized stress-strain behaviour of ‘wet’ clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609Google Scholar
  33. 33.
    Scasserra G, Lanzo G, Stewart JP, D’Elia B (2008) Sisma (site of italian strong motion accelerograms): a web-database of ground motion recordings for engineering applications. In: AIP conference proceedings, vol 1020, p 1649Google Scholar
  34. 34.
    Viggiani G, Tamagnini C (2000) Ground movements around excavations in granular soils: a few remarks on the influence of the constitutive assumptions on fe predictions. Mech Cohes-Frict Mater 5(5):399–423CrossRefGoogle Scholar
  35. 35.
    Wegener D (2013) Ermittlung bleibender bodenverformungen infolge dynamischer belastung mittels numerischer verfahren. Ph.D. thesis, Technische Universitaet DresdenGoogle Scholar
  36. 36.
    Wegener D, Herle I (2014) Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Geotechnik 37(2):113–122CrossRefGoogle Scholar
  37. 37.
    Whitman R.V (1990) Seismic design and behavior of gravity retaining walls. In: Design and performance of earth retaining structures, pp 817–842. ASCEGoogle Scholar
  38. 38.
    Zeng X, Steedman R (2000) Rotating block method for seismic displacement of gravity walls. J Geotech Geoenviron Eng 126(8):709–717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.eCampus UniversityNovedrateItaly
  2. 2.University of PerugiaPerugiaItaly

Personalised recommendations