Acta Geotechnica

, Volume 14, Issue 3, pp 709–726 | Cite as

An elastoplastic mechanical constitutive model for microbially mediated cemented soils

  • Xuerui Gai
  • Marcelo SánchezEmail author
Research Paper


Microbially induced calcite precipitation (MICP) is an innovative bio-mediated soil improvement technique that develops cementation within originally loose and potentially collapsible soils. This method utilizes biogeochemical processes with microbes. It has the advantage of being friendly to the environment and sustainable. In spite of the current interest in the MICP technique, the mechanical modeling of MICP-treated soils is still limited. In this paper, a constitutive model for MICP-treated sands is presented. The core components of the proposed approach include: a critical state yield surface, sub-loading concepts, a mechanism to account for the MICP-induced cementation enhancement, and an evolution law to consider bonding degradation effects during shearing. The mathematical framework is presented in detail. The model is then applied to analyze recently published experiments involving MICP-treated samples, with different calcite contents, and tested under different conditions (i.e., various confining pressure and loading paths). The model was able to properly capture the main features of MICP-treated sands behavior observed in the tests. It also assisted to interpret the response of this type of soil under different loading conditions.


Bonding degradation Cementation Constitutive modeling Elastoplasticity Mechanical behavior MICP-treated soil Model application 



  1. 1.
    Al Qabany A, Soga K (2013) Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 63(4):331CrossRefGoogle Scholar
  2. 2.
    Al Qabany A, Soga K, Santamarina C (2011) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001CrossRefGoogle Scholar
  3. 3.
    Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430CrossRefGoogle Scholar
  4. 4.
    Arroyo M, Ciantia M, Castellanza R, Gens A, Nova R (2012) Simulation of cement-improved clay structures with a bonded elasto-plastic model: a practical approach. Comput Geotech 45:140–150CrossRefGoogle Scholar
  5. 5.
    Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93(2):171–181CrossRefGoogle Scholar
  6. 6.
    Barkouki T, Martinez B, Mortensen B, Weathers T, De Jong J, Ginn T et al (2011) Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments. Transp Porous Media 90(1):23–39CrossRefGoogle Scholar
  7. 7.
    Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7(2):205–216CrossRefGoogle Scholar
  8. 8.
    Borja RI (2004) Cam-Clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput Methods Appl Mech Eng 193(48–51):5301–5338MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Borja RI (2013) Plasticity: modeling & computation. Springer, BerlinzbMATHCrossRefGoogle Scholar
  10. 10.
    Borja RI, Tamagnini C (1996) Critical state model at finite strains. In: Lin YK, Su TC (eds) Proceedings of 11th conference. Engineering mechanics division of the American society of civil engineers, pp 148–151Google Scholar
  11. 11.
    Borja RI, Tamagnini C (1998) Cam-Clay plasticity Part III: extension of the infinitesimal model to include finite strains. Comput Methods Appl Mech Eng 155(1–2):73–95zbMATHCrossRefGoogle Scholar
  12. 12.
    Borja RI, Tamagnini C, Amorosi A (1997) Coupling plasticity and energy-conserving elasticity models for clays. J Geotech Geoenviron Eng 123(10):948–957CrossRefGoogle Scholar
  13. 13.
    Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28(4):301–312CrossRefGoogle Scholar
  14. 14.
    Burbank M, Weaver T, Lewis R, Williams T, Williams B, Crawford R (2012) Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J Geotech Geoenviron Eng 139(6):928–936CrossRefGoogle Scholar
  15. 15.
    Carmona JP, Oliveira PJV, Lemos LJ (2016) Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation. Procedia Eng 143:1301–1308CrossRefGoogle Scholar
  16. 16.
    Chang I, Cho G-C (2018) Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica 1–15.
  17. 17.
    Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72CrossRefGoogle Scholar
  18. 18.
    Cheng L, Shahin M (2017) Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs. Géotechnique Lett 7(2):146–151CrossRefGoogle Scholar
  19. 19.
    Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90CrossRefGoogle Scholar
  20. 20.
    Chou C-W, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189CrossRefGoogle Scholar
  21. 21.
    Chu J, Ivanov V, Stabnikov V, Bi L (2013) Microbial method for construction of aquaculture pond in sand. Geotechnique 63(10):871–875CrossRefGoogle Scholar
  22. 22.
    Cui M-J, Zheng J-J, Zhang R-J, Lai H-J, Zhang J (2017) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12(5):971–986CrossRefGoogle Scholar
  23. 23.
    Dadda A, Geindreau C, Emeriault F, du Roscoat SR, Garandet A, Sapin L et al (2017) Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography. Acta Geotech 12(5):955–970CrossRefGoogle Scholar
  24. 24.
    DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392CrossRefGoogle Scholar
  25. 25.
    DeJong JT, Martinez B, Mortensen B, Nelson D, Waller J, Weil M et al (2009) Upscaling of bio-mediated soil improvement. In: Proc 17th int conf on soil mechanics and geotechnical engineering, 5–9 October 2009, Alexandria, Egypt, pp 2300–2303. Millpress Science Publishers, Rotterdam, The NetherlandsGoogle Scholar
  26. 26.
    DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210CrossRefGoogle Scholar
  27. 27.
    DeJong JT, Soga K, Banwart SA, Whalley WR, Ginn TR, Nelson DC et al (2010) Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. J R Soc Interface 8(54):1–15. CrossRefGoogle Scholar
  28. 28.
    DeJong JT, Soga K, Kavazanjian E, Burns S, Van Paassen L, Al Qabany A et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63(4):287CrossRefGoogle Scholar
  29. 29.
    Desai C (1989) Letter to editor single surface yield and potential function plasticity models: a review. Comput Geotech 7(4):319–333CrossRefGoogle Scholar
  30. 30.
    Desai C, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Anal Meth Geomech 10(3):225–257zbMATHCrossRefGoogle Scholar
  31. 31.
    Fauriel S, Laloui L (2012) A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Comput Geotech 46:104–120CrossRefGoogle Scholar
  32. 32.
    Feng K, Montoya B (2015) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057CrossRefGoogle Scholar
  33. 33.
    Fujita Y, Taylor JL, Wendt LM, Reed DW, Smith RW (2010) Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ Sci Technol 44(19):7652–7658CrossRefGoogle Scholar
  34. 34.
    Gai X, Sánchez M (2017) A geomechanical model for gas hydrate-bearing sediments. Environ Geotech 4(2):143–156CrossRefGoogle Scholar
  35. 35.
    Gens A, Nova R (1993) Conceptional basis for a constitutive model for bonded soils and weak rocks. In: Proc geotechnical engineering of hard soils-soft rocks, Athens, Greece, pp 485 ± 94Google Scholar
  36. 36.
    Gens A, Potts D (1988) Critical state models in computational geomechanics. Eng Comput 5(3):178–197CrossRefGoogle Scholar
  37. 37.
    Gomez MG, DeJong JT (2017) Engineering properties of bio-cementation improved sandy soils. In: Proceedings of grouting 2017: grouting, drilling, and verification. Honolulu, Hawaii, pp 22–33, 9–12 July 2017.
  38. 38.
    Gomez MG, Anderson CM, DeJong JT, Nelson DC, Lau XH (2014) Stimulating in situ soil bacteria for bio-cementation of sands. In: Geo-Congress 2014: geo-characterization and modeling for sustainability, pp 1674–1682Google Scholar
  39. 39.
    Gomez MG, Martinez BC, DeJong JT, Hunt CE, deVlaming LA, Major DW et al (2015) Field-scale bio-cementation tests to improve sands. Proc Inst Civil Eng Ground Improv 168(3):206–216CrossRefGoogle Scholar
  40. 40.
    Gray DH, Sotir RB (1996) Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. Wiley, New YorkGoogle Scholar
  41. 41.
    Hamdan N, Kavazanjian E Jr, Rittmann BE, Karatas I (2017) Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiol J 34(2):139–146CrossRefGoogle Scholar
  42. 42.
    Hashiguchi K (1977) Elasto-plastic constitutive laws of granular materials, constitutive equations of soils. In: Proc Spec Session 9 of 9th Int ICSMFE, pp 73–82Google Scholar
  43. 43.
    Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25(8):917–945zbMATHCrossRefGoogle Scholar
  44. 44.
    Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Bio/Technol 7(2):139–153CrossRefGoogle Scholar
  45. 45.
    James G, Warwood B, Hiebert R, Cunningham A (2000) Microbial barriers to the spread of pollution. In: Valdes JJ (ed) Bioremediation. Springer, Dordrecht, pp 1–13Google Scholar
  46. 46.
    Jiang N-J, Soga K (2016) The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Géotechnique 67(1):42–55CrossRefGoogle Scholar
  47. 47.
    Jiang N-J, Soga K, Kuo M (2016) Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron Eng 143(3):04016100CrossRefGoogle Scholar
  48. 48.
    Lee K, Chan D, Lam K (2004) Constitutive model for cement treated clay in a critical state frame work. Soils Found 44(3):69–77CrossRefGoogle Scholar
  49. 49.
    Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85CrossRefGoogle Scholar
  50. 50.
    Lin H, Suleiman MT, Brown DG, Kavazanjian E Jr (2015) Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142(2):04015066CrossRefGoogle Scholar
  51. 51.
    Lin JS, Seol Y, Choi JH (2015) An SMP critical state model for methane hydrate-bearing sands. Int J Numer Anal Meth Geomech 39(9):969–987CrossRefGoogle Scholar
  52. 52.
    Manning D (2008) Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Mineral Mag 72(2):639–649CrossRefGoogle Scholar
  53. 53.
    Martinez BC, DeJong JT (2009) Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Advances in ground improvement: research to practice in the United States and China, pp 242–251Google Scholar
  54. 54.
    Martinez B, Barkouki T, DeJong J, Ginn T (2011) Upscaling microbial induced calcite precipitation in 0.5 m columns: experimental and modeling results. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4049–4059, 13–16 March 2011.
  55. 55.
    Martinez B, DeJong J, Ginn T, Montoya B, Barkouki T, Hunt C et al (2013) Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng 139(4):587–598CrossRefGoogle Scholar
  56. 56.
    Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233CrossRefGoogle Scholar
  57. 57.
    Montoya B, DeJong J (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019CrossRefGoogle Scholar
  58. 58.
    Mortensen B, DeJong J (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4012–4020, 13–16 March 2011.
  59. 59.
    Mortensen B, Haber M, DeJong J, Caslake L, Nelson D (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111(2):338–349CrossRefGoogle Scholar
  60. 60.
    Nova R (1988) Sinfonietta classica: an exercise on classical soil modelling. In: Proceedings of the international workshop on constitutive equations for granular non-cohesive soils, pp 501–519Google Scholar
  61. 61.
    Nova R, Castellanza R (1999) The effect of rock weathering on the geostatic stress state. In: Proc, Mechanics of Heterougeneous Materials, J-P Boehler Memorial Symp: Laboratoire Sols, Solides, Structures, Grenoble, France, pp 79–84Google Scholar
  62. 62.
    Nova R, Castellanza R, Tamagnini C (2003) A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. Int J Numer Anal Meth Geomech 27(9):705–732zbMATHCrossRefGoogle Scholar
  63. 63.
    Roscoe KH, Burland JB (1968) On the generalized stressstrain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, England, pp 535–609Google Scholar
  64. 64.
    Sánchez M, Gai X, Santamarina JC (2017) A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms. Comput Geotech 84:28–46CrossRefGoogle Scholar
  65. 65.
    Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Meth Geomech 40(18):2423–2449CrossRefGoogle Scholar
  66. 66.
    Sloan SW (1987) Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Meth Eng 24(5):893–911zbMATHCrossRefGoogle Scholar
  67. 67.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO 3. Soil Biol Biochem 31(11):1563–1571CrossRefGoogle Scholar
  68. 68.
    Tagliaferri F, Waller J, Andò E, Hall SA, Viggiani G, Bésuelle P et al (2011) Observing strain localisation processes in bio-cemented sand using x-ray imaging. Granul Matter 13(3):247–250CrossRefGoogle Scholar
  69. 69.
    Terzis D, Laloui L (2017) On the application of microbially induced calcite precipitation for soils: a multiscale study. Advances in laboratory testing and modelling of soils and shales. Springer, Berlin, pp 388–394Google Scholar
  70. 70.
    Terzis D, Bernier-Latmani R, Laloui L (2016) Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Géotechnique Lett 6(1):50–57CrossRefGoogle Scholar
  71. 71.
    Uchida S, Soga K, Yamamoto K (2012) Critical state soil constitutive model for methane hydrate soil. J Geophys Res Solid Earth 117(B3):1–13CrossRefGoogle Scholar
  72. 72.
    Van Paassen L (2011) Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Proceedings of geo-frontiers 2011: advances in geotechnical engineering. Dallas, Texas, United States, pp 4049–4059, 13–16 March 2011.
  73. 73.
    van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MC (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175CrossRefGoogle Scholar
  74. 74.
    van Paassen LA, Ghose R, van der Linden TJ, van der Star WR, van Loosdrecht MC (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728CrossRefGoogle Scholar
  75. 75.
    Van Wijngaarden W, Vermolen F, van Meurs GA, Vuik C (2011) Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation. Transp Porous Media 87(2):397–420CrossRefGoogle Scholar
  76. 76.
    Van Wijngaarden W, Vermolen F, Van Meurs GA, Vuik C (2012) A mathematical model and analytical solution for the fixation of bacteria in Biogrout. Transp Porous Media 92(3):847–866MathSciNetCrossRefGoogle Scholar
  77. 77.
    Weil MH, DeJong JT, Martinez BC, Mortensen BM (2012) Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. Geotech Test J 35(2):330–341. CrossRefGoogle Scholar
  78. 78.
    Wheeler S, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53CrossRefGoogle Scholar
  79. 79.
    Zytynski M, Randolph M, Nova R, Wroth C (1978) On modelling the unloading-reloading behaviour of soils. Int J Numer Anal Meth Geomech 2(1):87–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations