Advertisement

Micromechanical modeling of particle breakage of granular materials in the framework of thermomechanics

  • Chaomin Shen
  • Sihong Liu
  • Liujiang Wang
  • Yishu Wang
Research Paper
  • 47 Downloads

Abstract

The particle breakage of granular materials under compression is a phenomenon of great importance. In this paper, a micromechanically based model for the compression of crushable granular materials is developed in the framework of thermomechanics. Both the internal and dissipative energies in the model are derived using the micro–macro volume averaging approach to ensure that all parameters involved have concrete physical meanings. The particle breakage is quantified by the change of the maximum particle size, the size polydispersity and the fractal dimension of the gradation. Compared to other breakage models, there is a major difference that highlights the novelty of the proposed model: neither the ultimate particle size distribution, nor the evolution path of the gradation is predefined in the model. The initiation, evolution and the attenuation of the breakage can be determined by the maximum dissipation principle using thermomechanics and micromechanics. Finally, it is demonstrated that the proposed model can predict the stress dependence of the elastic bulk modulus, the size dependence of the yielding stress and the elastic–plastic-pseudoelastic phase transition of granular materials.

Keywords

Granular material Micromechanics Particle breakage Physically based model Thermomechanics 

Notes

Acknowledgements

This work is supported by the “National Key R&D Program of China” (Grant No. 2017YFC0404800), the “National Natural Science Foundation of China” (Grant No. U1765205) and “the Fundamental Research Funds for the Central Universities” (Grant No. 2018B40914). Financial support from the National Natural Science Foundation of China (Project No. 51509077) and the Fundamental Research Funds for the Central Universities (Project No. 2016B03514) are also gratefully acknowledged.

References

  1. 1.
    Alikarami R, Andò E, Gkiousas-Kapnisis M, Torabi A, Viggiani G (2015) Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotech 10(1):15–30CrossRefGoogle Scholar
  2. 2.
    Alonso E, Olivella S, Pinyol N (2005) A review of Beliche Dam. Géotechnique 55(4):267–285CrossRefGoogle Scholar
  3. 3.
    Alonso E, Tapias M, Gili J (2012) Scale effects in rockfill behaviour. Géotech Lett 2(3):155–160CrossRefGoogle Scholar
  4. 4.
    Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B Condens Matter Complex Syst 5(3):551–554CrossRefGoogle Scholar
  5. 5.
    Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26CrossRefGoogle Scholar
  6. 6.
    Ben-Nun O, Einav I, Tordesillas A (2010) Force attractor in confined comminution of granular materials. Phys Rev Lett 104(10):108001CrossRefGoogle Scholar
  7. 7.
    Bolton M, McDowell G (1997) Clastic mechanics. Solid Mech Appl 53:35–46Google Scholar
  8. 8.
    Bolton M, Nakata Y, Cheng Y (2008) Micro- and macro-mechanical behaviour of DEM crushable materials. Géotechnique 58(6):471–480CrossRefGoogle Scholar
  9. 9.
    Bruchmüller J, Van Wachem B, Gu S, Luo K (2011) Modelling discrete fragmentation of brittle particles. Powder Technol 208(3):731–739CrossRefGoogle Scholar
  10. 10.
    Chang CS, Kabir MG, Chung Y (1992) Micromechanics modeling for stress-strain behavior of granular soils. II: evaluation. J Geotech Eng 118(12):1975–1992CrossRefGoogle Scholar
  11. 11.
    Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Geotechnique 53(7):633–641CrossRefGoogle Scholar
  12. 12.
    Ciantia M, Alvarez Arroyo, de Toledo M, Calvetti F, Gens Solé A (2015) An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique 65(2):91–110CrossRefGoogle Scholar
  13. 13.
    Cil M, Alshibli K (2012) 3D assessment of fracture of sand particles using discrete element method. Géotech Lett 2(3):161–166CrossRefGoogle Scholar
  14. 14.
    Collins I, Houlsby G (1997) Application of thermomechanical principles to the modelling of geotechnical materials. In: Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, vol 1964. The Royal Society, pp 1975–2001Google Scholar
  15. 15.
    Collins IF, Muhunthan B (2003) On the relationship between stress–dilatancy, anisotropy, and plastic dissipation for granular materials. Geotechnique 53(7):611–618CrossRefGoogle Scholar
  16. 16.
    Coop M, Sorensen K, Freitas TB, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Géotechnique 54(3):157–164CrossRefGoogle Scholar
  17. 17.
    Das A, Bajpai PK (2018) A hypo-plastic approach for evaluating railway ballast degradation. Acta Geotech.  https://doi.org/10.1007/s11440-017-0584-7 Google Scholar
  18. 18.
    Du J, Hou K, Liang W, Peng G (2013) Experimental study of compaction characteristics and fractal feature in crushing of coarse-grained soils. Rock Soil Mech 34(S1):155–161 (in Chinese) Google Scholar
  19. 19.
    Einav I (2007) Breakage mechanics—Part I: theory. J Mech Phys Solids 55(6):1274–1297.  https://doi.org/10.1016/j.jmps.2006.11.003 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Einav I (2007) Breakage mechanics—Part II: modelling granular materials. J Mech Phys Solids 55(6):1298–1320.  https://doi.org/10.1016/j.jmps.2006.11.004 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Einav I (2007) Fracture propagation in brittle granular matter. Proc R Soc A Math Phys Eng Sci 463(2087):3021–3035.  https://doi.org/10.1098/rspa.2007.1898 CrossRefGoogle Scholar
  22. 22.
    Einav I, Valdes JR (2008) On comminution and yield in brittle granular mixtures. J Mech Phys Solids 56(6):2136–2148CrossRefMATHGoogle Scholar
  23. 23.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198CrossRefGoogle Scholar
  24. 24.
    Group, IC INC (2005) PFC3D Particle flow code in 3 dimensions–command reference. Itasca Consulting Group. Inc, MineapolisGoogle Scholar
  25. 25.
    Hagerty M, Hite D, Ullrich C, Hagerty D (1993) One-dimensional high-pressure compression of granular media. J Geotech Eng 119(1):1–18CrossRefGoogle Scholar
  26. 26.
    Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRefGoogle Scholar
  27. 27.
    Hertz H (1896) Miscellaneous papers. Macmillan, New YorkMATHGoogle Scholar
  28. 28.
    Houlsby GT, Puzrin AM (2007) Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles. Springer, BerlinGoogle Scholar
  29. 29.
    Kruyt N, Rothenburg L (1996) Micromechanical definition of the strain tensor for granular materials. J Appl Mech 63(3):706–711CrossRefMATHGoogle Scholar
  30. 30.
    Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316CrossRefGoogle Scholar
  31. 31.
    Lee KL, Farhoomand I (1967) Compressibility and crushing of granular soil in anisotropic triaxial compression. Can Geotech J 4(1):68–86CrossRefGoogle Scholar
  32. 32.
    Leung C, Lee F, Yet N (1997) The role of particle breakage in pile creep in sand. Can Geotech J 33(6):888–898CrossRefGoogle Scholar
  33. 33.
    Liu S (2006) Simulating a direct shear box test by DEM. Can Geotech J 43(2):155–168MathSciNetCrossRefGoogle Scholar
  34. 34.
    Liu S, Wang Z, Wang Y, Wang L, Fu Z (2015) A yield function for granular materials based on microstructures. Eng Comput 32(4):1006–1024CrossRefGoogle Scholar
  35. 35.
    Ma G, Zhou W, Ng T-T, Cheng Y-G, Chang X-L (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10(4):481–496CrossRefGoogle Scholar
  36. 36.
    Ma G, Regueiro RA, Zhou W, Wang Q, Liu JY (2018) Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotech 13(3):601–618CrossRefGoogle Scholar
  37. 37.
    Madadi M, Tsoungui O, Lätzel M, Luding S (2004) On the fabric tensor of polydisperse granular materials in 2D. Int J Solids Struct 41(9):2563–2580CrossRefMATHGoogle Scholar
  38. 38.
    Marsal RJ (1967) Large-scale testing of rockfill materials. J Soil Mech Found Div 93(2):27–43Google Scholar
  39. 39.
    McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679CrossRefGoogle Scholar
  40. 40.
    McDowell GR, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895CrossRefGoogle Scholar
  41. 41.
    McDowell G, Bolton M, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101CrossRefGoogle Scholar
  42. 42.
    Mesri G, Vardhanabhuti B (2009) Compression of granular materials. Can Geotech J 46(4):369–392CrossRefGoogle Scholar
  43. 43.
    Minh N, Cheng Y (2013) A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 63(1):44CrossRefGoogle Scholar
  44. 44.
    Miura N, Ohara S (1979) Particle-crushing of a decomposed granite soil under shear stresses. Soils Found 19(3):1–14CrossRefGoogle Scholar
  45. 45.
    Nakata Y, Kato Y, Hyodo M, Hyde AF, Murata H (2001) One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found 41(2):39–51CrossRefGoogle Scholar
  46. 46.
    Ouchiyama N, Tanaka T (1981) Porosity of a mass of solid particles having a range of sizes. Ind Eng Chem Fundam 20(1):66–71CrossRefGoogle Scholar
  47. 47.
    Pestana JM, Whittle A (1995) Compression model for cohesionless soils. Géotechnique 45(4):611–632CrossRefGoogle Scholar
  48. 48.
    Robertson D (2000) Computer simulations of crushable aggregates. University of Cambridge, CambridgeGoogle Scholar
  49. 49.
    Roscoe K, Burland JB (1968) On the generalized stress-strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609Google Scholar
  50. 50.
    Sammis C, King G, Biegel R (1987) The kinematics of gouge deformation. Pure Appl Geophys 125(5):777–812CrossRefGoogle Scholar
  51. 51.
    Shaebani MR, Madadi M, Luding S, Wolf DE (2012) Influence of polydispersity on micromechanics of granular materials. Phys Rev E Stat Nonlinear Soft Matter Phys 85(1 Pt 1):011301.  https://doi.org/10.1103/PhysRevE.85.011301 CrossRefGoogle Scholar
  52. 52.
    Shen C, Liu S, Wang Y (2017) Microscopic interpretation of one-dimensional compressibility of granular materials. Comput Geotech 91:161–168CrossRefGoogle Scholar
  53. 53.
    Sheng D, Yao Y, Carter JP (2008) A volume–stress model for sands under isotropic and critical stress states. Can Geotech J 45(11):1639–1645CrossRefGoogle Scholar
  54. 54.
    Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198CrossRefGoogle Scholar
  55. 55.
    Tyler SW, Wheatcraft SW (1992) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J 56(2):362–369CrossRefGoogle Scholar
  56. 56.
    Wood DM, Maeda K (2008) Changing grading of soil: effect on critical states. Acta Geotech 3(1):3–14CrossRefGoogle Scholar
  57. 57.
    Wu Y, Ma G, Zhou W, Yang L (2016) Optimization of gradation of rockfill materials based on the fractal theory. Rock Soil Mech 37(7):1977–1985 (in Chinese) Google Scholar
  58. 58.
    Xiao Y, Liu HL, Chen QS, Ma QF, Xiang YZ, Zheng YR (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184CrossRefGoogle Scholar
  59. 59.
    Yamamuro JA, Bopp PA, Lade PV (1996) One-dimensional compression of sands at high pressures. J Geotech Eng 122(2):147–154CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Buscarnera G, Einav I (2016) Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics. Géotechnique 66(2):149–160CrossRefGoogle Scholar
  61. 61.
    Zhao C, Yin Z, Misra A, Hicher PY (2018) Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int J Solids Struct.  https://doi.org/10.1016/j.ijsolstr.2017.12.029 Google Scholar
  62. 62.
    Zhou M, Song E (2016) A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory. Acta Geotech 11(4):827–847CrossRefGoogle Scholar
  63. 63.
    Ziegler H (2012) An introduction to thermomechanics, vol 21. Elsevier, AmsterdamMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chaomin Shen
    • 1
  • Sihong Liu
    • 1
  • Liujiang Wang
    • 1
  • Yishu Wang
    • 1
  1. 1.College of Water Conservancy and Hydropower EngineeringHohai UniversityNanjingChina

Personalised recommendations