Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonlinear dynamics and manipulation of dripping in capillary flow focusing

  • 64 Accesses

Abstract

In this study, we carried out experimental and numerical investigations on the dripping dynamics in axisymmetric capillary flow focusing. For the direct numerical simulations, we solved the Navier-Stokes equations coupled with a diffuse interface method. For the experiments, we observed both periodic and non-periodic dripping modes at different focused and focusing liquid flow rates. The non-periodic dripping that results in polydispersed droplets downstream the orifice can be attributed to the nonlinear dynamics of the flow; thus, we constructed numerical plots of the streamlines and temporal evolutions of the focused liquid cone in different modes. We identified a phase diagram of the dripping regimes in the plane of mainly dimensionless parameters, which led us to further investigate the effects of liquid physical properties, such as viscosity and interface tension, on the mode transition. For suppression of the nonlinear dynamics, we proposed a geometrical optimization that imports a guiding rod positioning along the axis of the capillary tube. Here, we conducted a numerical analysis on the manipulation of the dripping process, as well as scaling analysis on the appearance of the nonlinear dripping. We expect this study to provide an insight into the underlying physical mechanisms of dripping in flow focusing, which are advantageous in the generation of monodispersed microdroplets for various applications.

This is a preview of subscription content, log in to check access.

References

  1. 1

    S. L. Anna, Annu. Rev. Fluid Mech. 48, 285 (2016).

  2. 2

    P. Zhu, and L. Wang, Lab. Chip. 17, 34 (2017).

  3. 3

    Y. S. Yu, X. L. Xia, X. Zheng, X. Huang, and J. Z. Zhou, Sci. China-Phys. Mech. Astron. 60, 094612 (2017).

  4. 4

    B. Liao, G. F. Zhang, Y. J. Zhu, Z. F. Li, E. Q. Li, and J. M. Yang, Sci. China-Phys. Mech. Astron. 61, 104721 (2018).

  5. 5

    S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).

  6. 6

    G. M. Whitesides, Nature 442, 368 (2006).

  7. 7

    A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Science 308, 537 (2005).

  8. 8

    A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Phys. Rev. Lett. 99, 094502 (2007).

  9. 9

    C. D. Xue, X. D. Chen, C. Liu, and G. Q. Hu, Sci. China-Phys. Mech. Astron. 59, 674711 (2016).

  10. 10

    A. M. Gañán-Calvo, Phys. Rev. Lett. 80, 285 (1998).

  11. 11

    A. Barrero, and I. G. Loscertales, Annu. Rev. Fluid Mech. 39, 89 (2007).

  12. 12

    A. M. Gañán-Calvo, J. M. Montanero, L. Martín-Banderas, and M. Flores-Mosquera, Adv. Drug Deliver. Rev. 65, 1447 (2013).

  13. 13

    T. Si, G. B. Li, and X. Z. Yin, Adv. Mech. 47, 201701 (2017).

  14. 14

    T. Si, F. Li, X. Y. Yin, and X. Z. Yin, J. Fluid Mech. 629, 1 (2009).

  15. 15

    T. Si, F. Li, X. Y. Yin, and X. Z. Yin, Phys. Fluids 22, 112105 (2010).

  16. 16

    A. M. Gañán-Calvo, and J. M. Gordillo, Phys. Rev. Lett. 87, 274501 (2001).

  17. 17

    A. M. Gañán-Calvo, Phys. Rev. E 69, 027301 (2004).

  18. 18

    A. M. Gañán-calvo, J. Fluid Mech. 553, 75 (2006).

  19. 19

    K. Mu, H. Ding, and T. Si, Microfluid Nanofluid 22, 138 (2018).

  20. 20

    T. Si, H. Feng, X. Luo, and R. X. Xu, Microfluid Nanofluid 18, 967 (2015).

  21. 21

    Z. Zhu, T. Si, and R. X. Xu, Lab. Chip. 15, 646 (2015).

  22. 22

    T. Si, G. Li, Q. Wu, Z. Zhu, X. Luo, and R. X. Xu, Appl. Phys. Lett. 108, 111109 (2016).

  23. 23

    Q. Wu, C. Yang, G. Liu, W. Xu, Z. Zhu, T. Si, and R. X. Xu, Lab. Chip. 17, 3168 (2017).

  24. 24

    M. A. Herrada, A. M. Gañán-Calvo, A. Ojeda-Monge, B. Bluth, and P. Riesco-Chueca, Phys. Rev. E 78, 036323 (2008), arXiv: 0804.3138.

  25. 25

    F. Cruz-Mazo, J. M. Montanero, and A. M. Gañán-Calvo, Phys. Rev. E 94, 053122 (2016).

  26. 26

    E. J. Vega, A. J. Acero, J. M. Montanero, M. A. Herrada, and A. M. Gañán-Calvo, Phys. Rev. E 89, 063012 (2014).

  27. 27

    C. Clanet, and J. C. Lasheras, J. Fluid Mech. 383, 307 (1999).

  28. 28

    B. Ambravaneswaran, S. D. Phillips, and O. A. Basaran, Phys. Rev. Lett. 85, 5332 (2000).

  29. 29

    B. Ambravaneswaran, H. J. Subramani, S. D. Phillips, and O. A. Basaran, Phys. Rev. Lett. 93, 034501 (2004).

  30. 30

    H. J. Subramani, H. K. Yeoh, R. Suryo, Q. Xu, B. Ambravaneswaran, and O. A. Basaran, Phys. Fluids 18, 032106 (2006).

  31. 31

    C. Cramer, P. Fischer, and E. J. Windhab, Chem. Eng. Sci. 59, 3045 (2004).

  32. 32

    C. Cramer, S. Studer, E. J. Windhab, and P. Fischer, Phys. Fluids 24, 093101 (2012).

  33. 33

    P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, Appl. Phys. Lett. 85, 2649 (2004).

  34. 34

    P. Garstecki, M. J. Fuerstman, and G. M. Whitesides, Phys. Rev. Lett. 94, 234502 (2005).

  35. 35

    D. Jacqmin, J. Comput. Phys. 155, 96 (1999).

  36. 36

    P. Zuo, and Y. P. Zhao, Phys. Chem. Chem. Phys. 17, 287 (2015).

  37. 37

    Y. P. Zhao, Physical Mechanics of Surfaces and Interfaces (Science Press, Beijing, 2012)

  38. 38

    F. Magaletti, F. Picano, M. Chinappi, L. Marino, and C. M. Casciola, J. Fluid Mech. 714, 95 (2013).

  39. 39

    H. Ding, P. D. M. Spelt, and C. Shu, J. Comput. Phys. 226, 2078 (2007).

  40. 40

    K. Mu, T. Si, E. Li, R. X. Xu, and H. Ding, Phys. Fluids 30, 012111 (2018).

  41. 41

    H. Ding, and P. D. M. Spelt, Phys. Rev. E 75, 46708 (2007).

  42. 42

    Y. Sui, H. Ding, and P. D. M. Spelt, Annu. Rev. Fluid Mech. 46, 97 (2014).

  43. 43

    H. Liu, K. Mu, and H. Ding, Appl. Math. Mech.-Engl. Ed. 37, 1405 (2016).

  44. 44

    H. Ding, B. Q. Chen, H. R. Liu, C. Y. Zhang, P. Gao, and X. Y. Lu, J. Fluid Mech. 783, 504 (2015).

Download references

Author information

Correspondence to Ting Si.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, K., Si, T. & Ding, H. Nonlinear dynamics and manipulation of dripping in capillary flow focusing. Sci. China Phys. Mech. Astron. 62, 124713 (2019). https://doi.org/10.1007/s11433-019-9444-8

Download citation

Keywords

  • flow focusing
  • microdroplet
  • dripping
  • nonlinear dynamics