Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Entrance-channel dynamics in the reaction 40Ca+208Pb

Abstract

The entrance-channel dynamics including capture, fusion, and quasifission processes for the reaction 40Ca+208Pb is investigated in the fully microscopic time-dependent Hartree-Fock (TDHF) theory. The calculations are performed in three-dimensional Cartesian coordinate without any symmetry restrictions, in which the full Skyrme energy functional SLy4d and SLy5 are adopted. We study the energy dependence of capture cross sections, and find that the experimental data are well reproduced by the TDHF calculations. Both fusion and quasifission events are observed in the reaction 40Ca+208Pb. The contact time, mass and charge of quasifission fragments show a wide distribution in SLy4d compared with SLy5, implying that more nucleons are transferred in the SLy4d calculations. We find that the total kinetic energy of quasifission fragments in the TDHF calculations is distributed around Viola systematics, indicating that most of the relative kinetic energy is dissipated in quasifission dynamics.

This is a preview of subscription content, log in to check access.

References

  1. 1

    B. Guo, and N. Y. Wang, Sci. China-Phys. Mech. Astron. 60, 102031 (2017).

  2. 2

    L. M. Lu, H. Yi, Z. G. Xiao, M. Shao, S. Zhang, G. Q. Xiao, and N. Xu, Sci. China-Phys. Mech. Astron. 60, 012021 (2017).

  3. 3

    S. Hofmann, F. P. Heßberger, D. Ackermann, G. Münzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Reshitko, S. Śaro, J. Uusitalo, and A. V. Yeremin, Eur. Phys. J. A 14, 147 (2002).

  4. 4

    K. Morita, Nucl. Phys. A 944, 30 (2015).

  5. 5

    Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, and R. W. Lougheed, Phys. Rev. C 74, 044602 (2006).

  6. 6

    Y. T. Oganessian, F. S. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Y. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, Phys. Rev. Lett. 109, 162501 (2012).

  7. 7

    W. D. Myers, and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

  8. 8

    A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys. Lett. 22, 500 (1966).

  9. 9

    C. Y. Wong, Phys. Lett. 21, 688 (1966).

  10. 10

    H. Meldner, Arkiv Fys. 36, 593 (1967).

  11. 11

    M. Bender, W. Nazarewicz, and P. G. Reinhard, Phys. Lett. B 515, 42 (2001).

  12. 12

    S. Ćwiok, P. H. Heenen, and W. Nazarewicz, Nature 433, 705 (2005).

  13. 13

    J. C. Pei, F. R. Xu, and P. D. Stevenson, Phys. Rev. C 71, 034302 (2005).

  14. 14

    W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Nucl. Phys. A 753, 106 (2005).

  15. 15

    Q. Mo, M. Liu, and N. Wang, Phys. Rev. C 90, 024320 (2014), arXiv: 1408.4872.

  16. 16

    N. Wang, Z. Li, and X. Wu, Phys. Rev. C 65, 064608 (2002).

  17. 17

    K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Phys. Rev. Lett. 111, 012501 (2013), arXiv: 1305.0370.

  18. 18

    K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Phys. Rev. C 90, 054613 (2014), arXiv: 1407.5912.

  19. 19

    K. Zhao, Z. Li, Y. Zhang, N. Wang, Q. Li, C. Shen, Y. Wang, and X. Wu, Phys. Rev. C 94, 024601 (2016), arXiv: 1605.07393.

  20. 20

    C. Li, F. Zhang, J. Li, L. Zhu, J. Tian, N. Wang, and F. S. Zhang, Phys. Rev. C 93, 014618 (2016).

  21. 21

    C. Li, P. Wen, J. Li, G. Zhang, B. Li, X. Xu, Z. Liu, S. Zhu, and F. S. Zhang, Phys. Lett. B 776, 278 (2018).

  22. 22

    C. Simenel, Eur. Phys. J. A 48, 152 (2012), arXiv: 1209.3375.

  23. 23

    T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana, Rev. Mod. Phys. 88, 045004 (2016), arXiv: 1606.04717.

  24. 24

    C. Simenel, and A. S. Umar, Prog. Particle Nucl. Phys. 103, 19 (2018), arXiv: 1807.01859.

  25. 25

    P. D. Stevenson, and M. C. Barton, Prog. Particle Nucl. Phys. 104, 142 (2019), arXiv: 1809.05801.

  26. 26

    K. Sekizawa, Front. Phys. 7, 20 (2019), arXiv: 1902.01616.

  27. 27

    P. A. M. Dirac, Math. Proc. Camb. Phil. Soc. 26, 376 (1930).

  28. 28

    A. S. Umar, and V. E. Oberacker, Phys. Rev. C 77, 064605 (2008), arXiv: 0709.3972.

  29. 29

    K. Washiyama, and D. Lacroix, Phys. Rev. C 78, 024610 (2008), arXiv: 0804.2823.

  30. 30

    L. Guo, and T. Nakatsukasa, Eur. Phys. J. Web Conf. 38, 09003 (2012).

  31. 31

    C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013), arXiv: 1310.6500.

  32. 32

    A. S. Umar, C. Simenel, and V. E. Oberacker, Phys. Rev. C 89, 034611 (2014), arXiv: 1401.7230.

  33. 33

    K. Washiyama, Phys. Rev. C 91, 064607 (2015), arXiv: 1503.03437.

  34. 34

    K. Godbey, A. S. Umar, and C. Simenel, Phys. Rev. C 95, 011601 (2017), arXiv: 1609.08698.

  35. 35

    C. Simenel, A. S. Umar, K. Godbey, M. Dasgupta, and D. J. Hinde, Phys. Rev. C 95, 031601 (2017), arXiv: 1610.02663.

  36. 36

    L. Guo, C. Simenel, L. Shi, and C. Yu, Phys. Lett. B 782, 401 (2018), arXiv: 1805.09477.

  37. 37

    L. Guo, K. Godbey, and A. S. Umar, Phys. Rev. C 98, 064607 (2018), arXiv: 1808.10683.

  38. 38

    C. Golabek, and C. Simenel, Phys. Rev. Lett. 103, 042701 (2009), arXiv: 0904.3047.

  39. 39

    A. Wakhle, C. Simenel, D. J. Hinde, M. Dasgupta, M. Evers, D. H. Luong, R. du Rietz, and E. Williams, Phys. Rev. Lett. 113, 182502 (2014), arXiv: 1406.5894.

  40. 40

    V. E. Oberacker, A. S. Umar, and C. Simenel, Phys. Rev. C 90, 054605 (2014), arXiv: 1409.3277.

  41. 41

    A. S. Umar, V. E. Oberacker, and C. Simenel, Phys. Rev. C 94, 024605 (2016).

  42. 42

    C. Yu, and L. Guo, Sci. China-Phys. Mech. Astron. 60, 092011 (2017).

  43. 43

    L. Guo, C. Shen, C. Yu, and Z. Wu, Phys. Rev. C 98, 064609 (2018), arXiv: 1810.13114.

  44. 44

    C. Simenel, Phys. Rev. Lett. 105, 192701 (2010), arXiv: 1008.3033.

  45. 45

    G. Scamps, and D. Lacroix, Phys. Rev. C 87, 014605 (2013), arXiv: 1211.7271.

  46. 46

    K. Sekizawa, and K. Yabana, Phys. Rev. C 88, 014614 (2013), arXiv: 1303.0552.

  47. 47

    K. Sekizawa, and K. Yabana, Phys. Rev. C 90, 064614 (2014), arXiv: 1409.1083.

  48. 48

    N. Wang, and L. Guo, Phys. Lett. B 760, 236 (2016), arXiv: 1606.09330.

  49. 49

    K. Sekizawa, and K. Yabana, Phys. Rev. C 93, 054616 (2016).

  50. 50

    K. Sekizawa, Phys. Rev. C 96, 041601 (2017), arXiv: 1708.02885.

  51. 51

    K. Sekizawa, Phys. Rev. C 96, 014615 (2017), arXiv: 1705.02904.

  52. 52

    X. Jiang, and N. Wang, Chin. Phys. C 42, 104105 (2018), arXiv: 1807.10412.

  53. 53

    C. Simenel, and A. S. Umar, Phys. Rev. C 89, 031601 (2014), arXiv: 1312.4669.

  54. 54

    G. Scamps, C. Simenel, and D. Lacroix, Phys. Rev. C 92, 011602 (2015), arXiv: 1501.03592.

  55. 55

    P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C 92, 054610 (2015), arXiv: 1504.00919.

  56. 56

    P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C 93, 014620 (2016), arXiv: 1510.07846.

  57. 57

    Y. Tanimura, D. Lacroix, and S. Ayik, Phys. Rev. Lett. 118, 152501 (2017), arXiv: 1609.01424.

  58. 58

    J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Phys. Rev. C 74, 027601 (2006).

  59. 59

    L. Guo, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C 76, 014601 (2007).

  60. 60

    L. Guo, J. A. Maruhn, P. G. Reinhard, and Y. Hashimoto, Phys. Rev. C 77, 041301 (2008), arXiv: 0804.2127.

  61. 61

    Y. Iwata, and J. A. Maruhn, Phys. Rev. C 84, 014616 (2011), arXiv: 1012.3363.

  62. 62

    G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 90, 044609 (2014), arXiv: 1410.5573.

  63. 63

    G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Sci. China-Phys. Mech. Astron. 57, 1618 (2014), arXiv: 1410.5533.

  64. 64

    P. D. Stevenson, E. B. Suckling, S. Fracasso, M. C. Barton, and A. S. Umar, Phys. Rev. C 93, 054617 (2016), arXiv: 1507.00645.

  65. 65

    L. Guo, C. Yu, L. Shi, and C. Simenel, Eur. Phys. J. Web Conf. 163, 00021 (2017).

  66. 66

    L. Shi, and L. Guo, Nucl. Phys. Rev. 34, 41 (2017).

  67. 67

    A. S. Umar, C. Simenel, and W. Ye, Phys. Rev. C 96, 024625 (2017).

  68. 68

    J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014), arXiv: 1310.5946.

  69. 69

    T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C 76, 014312 (2007), arXiv: 0704.0731.

  70. 70

    D. Davesne, M. Martini, K. Bennaceur, and J. Meyer, Phys. Rev. C 80, 024314 (2009), arXiv: 0906.1927.

  71. 71

    P. Bonche, B. Grammaticos, and S. Koonin, Phys. Rev. C 17, 1700 (1978).

  72. 72

    K. H. Kim, T. Otsuka, and P. Bonche, J. Phys. G-Nucl. Part. Phys. 23, 1267 (1997).

  73. 73

    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

  74. 74

    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 643, 441 (1998).

  75. 75

    A. J. Pacheco, J. O. Fernández Niello, D. E. DiGregorio, M. di Tada, J. E. Testoni, Y. Chan, E. Chávez, S. Gazes, E. Plagnol, and R. G. Stokstad, Phys. Rev. C 45, 2861 (1992).

  76. 76

    B. Wang, K. Wen, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Atomic Data Nucl. Data Tables 114, 281 (2017).

  77. 77

    B. Wang, W. J. Zhao, A. Diaz-Torres, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 93, 014615 (2016), arXiv: 1512.00960.

  78. 78

    B. Wang, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Sci. China-Phys. Mech. Astron. 59, 642002 (2016), arXiv: 1511.08965.

  79. 79

    B. Wang, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 98, 014615 (2018), arXiv: 1807.03441.

  80. 80

    W. Q. Shen, J. Albinski, A. Gobbi, S. Gralla, K. D. Hildenbrand, N. Herrmann, J. Kuzminski, W. F. J. Müller, H. Stelzer, J. Tke, B. B. Back, S. Bjrnholm, and S. P. Srensen, Phys. Rev. C 36, 115 (1987).

  81. 81

    D. J. Hinde, R. G. Thomas, R. du Rietz, A. Diaz-Torres, M. Dasgupta, M. L. Brown, M. Evers, L. R. Gasques, R. Rafiei, and M. D. Rodriguez, Phys. Rev. Lett. 100, 202701 (2008).

  82. 82

    I. M. Itkis, E. M. Kozulin, M. G. Itkis, G. N. Knyazheva, A. A. Bogachev, E. V. Chernysheva, L. Krupa, Y. T. Oganessian, V. I. Zagrebaev, A. Y. Rusanov, F. Goennenwein, O. Dorvaux, L. Stuttgé, F. Hanappe, E. Vardaci, and E. de Goés Brennand, Phys. Rev. C 83, 064613 (2011).

  83. 83

    R. du Rietz, D. J. Hinde, M. Dasgupta, R. G. Thomas, L. R. Gasques, M. Evers, N. Lobanov, and A. Wakhle, Phys. Rev. Lett. 106, 052701 (2011).

  84. 84

    C. J. Lin, R. du Rietz, D. J. Hinde, M. Dasgupta, R. G. Thomas, M. L. Brown, M. Evers, L. R. Gasques, and M. D. Rodriguez, Phys. Rev. C 85, 014611 (2012).

  85. 85

    V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31, 1550 (1985).

Download references

Author information

Correspondence to Lu Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Z. & Guo, L. Entrance-channel dynamics in the reaction 40Ca+208Pb. Sci. China Phys. Mech. Astron. 62, 122011 (2019). https://doi.org/10.1007/s11433-019-9435-x

Download citation

  • capture
  • fusion
  • quasifission
  • TDHF