Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas

  • Chuang Liu
  • YongKuan Shen
  • JiaNing Zhang
  • DeTang Lu
  • He Liu
  • HengAn WuEmail author


Hydraulic fracturing has been widely applied in shale gas exploitation because it improves the permeability of the rock matrix. Fracturing stimulation parameters such as the pumping rate, the fracturing sequence, and the fracture spacing significantly influence the distribution of the stimulated reservoir volume (SRV). In this research, we built a numerical model that incorporates the hydraulic fracturing process and predicts gas production. The simulation of fracture propagation is based on the extended finite element method (XFEM), which helps to calculate aspects of the fractures and the SRV; we imported the results into a production analysis model as the initial conditions for production prediction. Using the model, we investigated the effects of some key parameters such as rock cohesion, fracture spacing, pumping rate, and fracturing sequence on the shale gas production. Our results proved that the SRV was distributed in the vicinity of the main fractures, and the SRVs were connected between the fractures in a small fracture spacing. We obtained optimal spacing by analyzing the production increment. High pumping-rate treatment greatly changes the in-situ stress around the hydraulic fractures and enlarges the field of SRV. Simultaneous fracturing treatment improves the flow conductivity of formation more than sequential fracturing. This study provides insights into the hydraulic fracturing design for economical production.

shale gas production prediction numerical simulation enhanced permeability area hydraulic fracturing 


  1. 1.
    D. D. Xu, Z. L. Liu, Z. Zhuang, Q. L. Zeng, and T. Wang, Sci. China-Phys. Mech. Astron. 60, 24611 (2017).CrossRefGoogle Scholar
  2. 2.
    T. Wang, Z. L. Liu, Q. L. Zeng, Y. Gao, and Z. Zhuang, Sci. China-Phys. Mech. Astron. 60, 84612 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Medeiros, E. Ozkan, and H. Kazemi, “Productivity and drainage area of fractured horizontal wells in tight gas reservoirs”, SPE Paper No. 108110, 2007.CrossRefGoogle Scholar
  4. 4.
    C. Liu, X. Jin, F. Shi, D. T. Lu, H. Liu, and H. A. Wu, J. Nat. Gas Sci. Eng. 59, 427 (2018).CrossRefGoogle Scholar
  5. 5.
    F. Shi, X. Wang, C. Liu, H. Liu, and H. Wu, Eng. Fract. Mech. 173, 64 (2017).CrossRefGoogle Scholar
  6. 6.
    X. L. Wang, F. Shi, C. Liu, D. T. Lu, H. Liu, and H. A. Wu, J. Nat. Gas Sci. Eng. 50, 309 (2018).CrossRefGoogle Scholar
  7. 7.
    W. Z. Liu, J. Yao, and Q. D. Zeng, Sci. Sin.-Tech. 49, 223 (2019).CrossRefGoogle Scholar
  8. 8.
    J. Ao, H. Sun, Z. Q. Huang, L. Zhang, Q. D. Zeng, H. G. Sui, and D. Y. Fan, Sci. Sin.-Phys. Mech. Astron. 43, 1527 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Chen, Y. Jin, and Y. H. Lu, Sci. Sin.-Phys. Mech. Astron. 47, 114601 (2017).CrossRefGoogle Scholar
  10. 10.
    B. Yuan, Y. Wang, and S. Zeng, J. Energy Resour. Technol. 140, 112901 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Yin, J. Xie, A. Datta-Gupta, and A. D. Hill, J. Pet. Sci. Eng. 127, 124 (2015).CrossRefGoogle Scholar
  12. 12.
    C. K. Miller, G. A. Waters, and E. I. Rylander, “Evaluation of production log data from horizontal wells drilled in organic shales”, SPE Paper No. 144326, 2011.CrossRefGoogle Scholar
  13. 13.
    Q. Zeng, T. Wang, Z. Liu, and Z. Zhuang, J. Appl. Mech. 84, 051004 (2017).CrossRefGoogle Scholar
  14. 14.
    Q. Zeng, Z. Liu, T. Wang, Y. Gao, and Z. Zhuang, Comput. Mech. 61, 137 (2018).MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Liu, F. Shi, D. T. Lu, H. A. Wu, H. Wang, and H. Liu, J. Pet. Sci. Eng. 159, 603 (2017).CrossRefGoogle Scholar
  16. 16.
    W. Yu, Z. Luo, F. Javadpour, A. Varavei, and K. Sepehrnoori, J. Pet. Sci. Eng. 113, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Fan, J. Yao, H. Sun, H. Zeng, and W. Wang, J. Nat. Gas Sci. Eng. 24, 115 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Zhang, S. Huang, L. Cheng, S. Ai, B. Teng, Y. Guan, and Y. Xue, J. Nat. Gas Sci. Eng. 21, 1032 (2014).CrossRefGoogle Scholar
  19. 19.
    L. Tian, C. Xiao, M. Liu, D. Gu, G. Song, H. Cao, and X. Li, J. Nat. Gas Sci. Eng. 21, 283 (2014).CrossRefGoogle Scholar
  20. 20.
    X. H. Wang, X. F. Huang, K. Lin, and Y.-P. Zhao, Glob. Challenges 3, 1900006 (2019).CrossRefGoogle Scholar
  21. 21.
    K. Stalgorova, and L. Mattar, SPE Reserv. Eval. Eng. 16, 246 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Zhang, S. Huang, L. Cheng, W. Xu, H. Liu, Y. Yang, and Y. Xue, J. Nat. Gas Sci. Eng. 24, 291 (2015).CrossRefGoogle Scholar
  23. 23.
    W. Xie, X. Li, L. Zhang, J. Wang, L. Cao, and L. Yuan, J. Nat. Gas Sci. Eng. 21, 691 (2014).CrossRefGoogle Scholar
  24. 24.
    W. Yu, and K. Sepehrnoori, Fuel 116, 455 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Tan, H. Li, X. Zhou, B. Jiang, Y. Wang, and N. Zhang, J. Energy Resour. Technol. 140, 102905 (2018).CrossRefGoogle Scholar
  26. 26.
    C. Liu, H. Liu, Y. P. Zhang, D. W. Deng, and H. A. Wu, J. Pet. Sci. Eng. 132, 86 (2015).CrossRefGoogle Scholar
  27. 27.
    M. Nassir, A. Settari, and R. G. Wan, SPE J. 19, 771 (2014).CrossRefGoogle Scholar
  28. 28.
    V. Sesetty, and A. Ghassemi, J. Pet. Sci. Eng. 132, 65 (2015).CrossRefGoogle Scholar
  29. 29.
    N. Warpinski, S. Wolhart, and C. Wright, “Analysis and prediction of microseismicity induced by hydraulic fracturing”, SPE Paper No. 71649, 2001.CrossRefGoogle Scholar
  30. 30.
    W. Shen, and Y. P. Zhao, J. Appl. Mech. 85, 031003 (2018).CrossRefGoogle Scholar
  31. 31.
    X. Weng, O. Kresse, D. Chuprakov, C. E. Cohen, R. Prioul, and U. Ganguly, J. Pet. Sci. Eng. 124, 468 (2014).CrossRefGoogle Scholar
  32. 32.
    B. Teng, L. Cheng, S. Huang, and H. Andy Li, J. Energy Resour. Technol. 140, 032913 (2018).CrossRefGoogle Scholar
  33. 33.
    F. Zhang, and D. Yang, J. Energy Resour. Technol. 140, 032903 (2018).CrossRefGoogle Scholar
  34. 34.
    W. Wang, M. Shahvali, and Y. Su, J. Energy Resour. Technol. 139, 012905 (2017).CrossRefGoogle Scholar
  35. 35.
    C. Liu, X. L. Wang, D. W. Deng, Y. P. Zhang, Y. G. Zhang, H. A. Wu, and H. Liu, J. Nat. Gas Sci. Eng. 29, 329 (2016).CrossRefGoogle Scholar
  36. 36.
    J. F. W. Gale, R. M. Reed, and J. Holder, Bulletin 91, 603 (2007).CrossRefGoogle Scholar
  37. 37.
    A. Ghassemi, X. X. Zhou, and C. Rawal, J. Pet. Sci. Eng. 108, 118 (2013).CrossRefGoogle Scholar
  38. 38.
    K. Wu, and J. E. Olson, SPE J. 20, 337 (2015).CrossRefGoogle Scholar
  39. 39.
    J. Guo, X. Zhao, H. Zhu, X. Zhang, and R. Pan, J. Nat. Gas Sci. Eng. 25, 180 (2015).CrossRefGoogle Scholar
  40. 40.
    O. Chang, M. Kinzel, R. Dilmore, and J. Y. Wang, J. Energy Resour. Technol. 140, 032912 (2018).CrossRefGoogle Scholar
  41. 41.
    C. R. Clarkson, M. Nobakht, D. Kaviani, and T. Ertekin, SPE J. 17, 230 (2012).CrossRefGoogle Scholar
  42. 42.
    B. R. Knudsen, and B. Foss, Comput. Chem. Eng. 58, 54 (2013).CrossRefGoogle Scholar
  43. 43.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).CrossRefGoogle Scholar
  44. 44.
    H. Kumar, D. Elsworth, J. P. Mathews, and C. Marone, Geofluids 16, 43 (2016).CrossRefGoogle Scholar
  45. 45.
    W. C. Zhu, J. Liu, J. C. Sheng, and D. Elsworth, Int. J. Rock Mech. Min. Sci. 44, 971 (2007).CrossRefGoogle Scholar
  46. 46.
    Y. Ning, Y. Jiang, H. Liu, and G. Qin, J. Nat. Gas Sci. Eng. 26, 345 (2015).CrossRefGoogle Scholar
  47. 47.
    L. Klinkenberg, The Permeability of Porous Media to Liquids and Gases. in Drilling and production practice (American Petroleum Institute, New York, 1941).Google Scholar
  48. 48.
    F. O. Jones, and W. W. Owens, J. Pet. Tech. 32, 1631 (1980).CrossRefGoogle Scholar
  49. 49.
    S. D. Butt, P. K. Frempong, C. Mukherjee, and J. Upshall, J. Appl. Geophys. 58, 1 (2005).CrossRefGoogle Scholar
  50. 50.
    C. R. Clarkson, J. D. Williams-Kovacs, F. Qanbari, H. Behmanesh, and M. H. Sureshjani, J. Nat. Gas Sci. Eng. 26, 1620 (2015).CrossRefGoogle Scholar
  51. 51.
    S. C. Zhang, X. Lei, Y. S. Zhou, and G. Q. Xu, Pet. Sci. 12, 674 (2015).CrossRefGoogle Scholar
  52. 52.
    J. E. Olson, and K. Wu, “Sequential vs. simultaneous multizone fracturing in horizontal wells: Insights from a non-planar, multifrac numerical model”, SPE Paper No. 152602, 2012.Google Scholar
  53. 53.
    W. V. Grieser, R. F. Shelley, and M. Y. Soliman, “Predicting production outcome from multi-stage, horizontal Barnett completions”, SPE Paper No. 120271, 2009.CrossRefGoogle Scholar
  54. 54.
    B. R. Meyer, L. W. Bazan, R. H. Jacot, and M. G. Lattibeaudiere, “Optimization of multiple transverse hydraulic fractures in horizontal wellbores”, SPE Paper No. 131732, 2010.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chuang Liu
    • 1
  • YongKuan Shen
    • 2
  • JiaNing Zhang
    • 1
  • DeTang Lu
    • 1
  • He Liu
    • 3
  • HengAn Wu
    • 1
    Email author
  1. 1.Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Hefei Guoxuan High-Tech Power Energy CompanyHefeiChina
  3. 3.PetroChina Research Institute of Petroleum Exploration & DevelopmentBeijingChina

Personalised recommendations