Glassy dynamics of water at interface with biomolecules: A Mode Coupling Theory test

  • Antonio Iorio
  • Gaia Camisasca
  • Paola GalloEmail author
Article Special topic: New advances in water and water systems


We study the slow dynamics of hydration water upon cooling in two different biological aqueous solutions, one containing a molecule of lysozyme and another with trehalose molecules. In particular we test if the glassy behaviour of these solutions fulfils the predictions of the popular Mode Coupling Theory of glassy dynamics. In particular we test the Time Temperature Superposition Principle and the matching of the exponents of the theory. Our results confirm that this theory is able to describe the dynamical behaviour of supercooled water also in non ideal cases as the ones under investigation in the region of mild supercooling.

glassy dynamics aqueous solutions biomolecules Molecular Dynamics 


  1. 1.
    P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, Chem. Rev. 116, 7463 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Ball, Chem. Rev. 108, 74 (2008).CrossRefGoogle Scholar
  3. 3.
    P. Gallo, and H. E. Stanley, Science 358, 1543 (2017).CrossRefGoogle Scholar
  4. 4.
    S. F. Mullen, and J. K. Critser, Cancer Treat. Res. 138, 83 (2007).CrossRefGoogle Scholar
  5. 5.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2008).CrossRefzbMATHGoogle Scholar
  6. 6.
    M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, J. Chem. Phys. 144, 074503 (2016).CrossRefGoogle Scholar
  7. 7.
    P. Gallo, F. Sciortino, P. Tartaglia, and S. H. Chen, Phys. Rev. Lett. 76, 2730 (1996).CrossRefGoogle Scholar
  8. 8.
    F. Sciortino, P. Gallo, P. Tartaglia, and S. H. Chen, Phys. Rev. E 54, 6331 (1996).CrossRefGoogle Scholar
  9. 9.
    R. Torre, P. Bartolini, and R. Righini, Nature 428, 296 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Gallo, M. Rovere, and S. H. Chen, J. Phys.-Condens. Matter 24, 064109 (2012).CrossRefGoogle Scholar
  11. 11.
    P. Gallo, M. Rovere, and S. H. Chen, J. Phys. Chem. Lett. 1, 729 (2010).CrossRefGoogle Scholar
  12. 12.
    L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).CrossRefGoogle Scholar
  13. 13.
    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen, J. Chem. Phys. 124, 161102 (2006).CrossRefGoogle Scholar
  14. 14.
    G. Camisasca, M. De Marzio, M. Rovere, and P. Gallo, J. Chem. Phys. 148, 222829 (2018).CrossRefGoogle Scholar
  15. 15.
    P. Gallo, D. Corradini, and M. Rovere, J. Chem. Phys. 139, 204503 (2013).CrossRefGoogle Scholar
  16. 16.
    S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, Proc. Natl. Acad. Sci. USA 103, 9012 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Lagi, X. Chu, C. Kim, F. Mallamace, P. Baglioni, and S. H. Chen, J. Phys. Chem. B 112, 1571 (2008).CrossRefGoogle Scholar
  18. 18.
    G. Camisasca, M. De Marzio, D. Corradini, and P. Gallo, J. Chem. Phys. 145, 044503 (2016).CrossRefGoogle Scholar
  19. 19.
    L. M. Crowe, D. S. Reid, and J. H. Crowe, Biophys. J. 71, 2087 (1996).CrossRefGoogle Scholar
  20. 20.
    A. Iorio, G. Camisasca, and P. Gallo, J. Mol. Liquids 282, 617 (2019).CrossRefGoogle Scholar
  21. 21.
    A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).CrossRefGoogle Scholar
  22. 22.
    A. D. Mackerell Jr., M. Feig, and C. L. Brooks III, J. Comput. Chem. 25, 1400 (2004).CrossRefGoogle Scholar
  23. 23.
    O. Guvench, S. N. Greene, G. Kamath, J. W. Brady, R. M. Venable, R. W. Pastor, and A. D. Mackerell Jr, J. Comput. Chem. 29, 2543 (2008).CrossRefGoogle Scholar
  24. 24.
    O. Guvench, E. Hatcher, R. M. Venable, R. W. Pastor, and A. D. MacKerell Jr., J. Chem. Theor. Comput. 5, 2353 (2009).CrossRefGoogle Scholar
  25. 25.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
  26. 26.
    B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theor. Comput. 4, 435 (2008).CrossRefGoogle Scholar
  27. 27.
    A. Magno, and P. Gallo, J. Phys. Chem. Lett. 2, 977 (2011).CrossRefGoogle Scholar
  28. 28.
    D. Corradini, E. G. Strekalova, H. E. Stanley, and P. Gallo, Sci. Rep. 3, 1218 (2013).CrossRefGoogle Scholar
  29. 29.
    L. Comez, L. Lupi, A. Morresi, M. Paolantoni, P. Sassi, and D. Fioretto, J. Phys. Chem. Lett. 4, 1188 (2013).CrossRefGoogle Scholar
  30. 30.
    M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, J. Chem. Phys. 146, 084502 (2017).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità Roma TreRomeItaly
  2. 2.Department of Physics, AlbaNova University CenterStockholm UniversityStockholmSweden

Personalised recommendations