Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice

  • ZhengXue Ren
  • ShuangQuan Zhang
  • PengWei Zhao
  • Naoyuki Itagaki
  • Joachim A. Maruhn
  • Jie MengEmail author
Article Editor’s Focus


The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three α initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of ~2.0-~2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency ~3.5 MeV, but the fission still occurs when the rotational frequency approaches ~4.0 MeV.

Key words

covariant density functional theory cranking model 3D lattice space linear chain structure alpha-cluster structure collective rotation 12


  1. [1]
    A. Bohr, and B. R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975).zbMATHGoogle Scholar
  2. [2]
    B. M. Nyakó, J. R. Cresswell, P. D. Forsyth, D. Howe, P. J. Nolan, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson, N. J. Ward, and P. J. Twin, Phys. Rev. Lett. 52, 507 (1984).ADSGoogle Scholar
  3. [3]
    P. J. Twin, B. M. Nyakó, A. H. Nelson, J. Simpson, M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, J. F. Sharpey-Schafer, and G. Sletten, Phys. Rev. Lett. 57, 811 (1986).ADSGoogle Scholar
  4. [4]
    A. Galindo-Uribarri, H. R. Andrews, G. C. Ball, T. E. Drake, V. P. Janzen, J. A. Kuehner, S. M. Mullins, L. Persson, D. Prévost, D. C. Radford, J. C. Waddington, D. Ward, and R. Wyss, Phys. Rev. Lett. 71, 231 (1993).ADSGoogle Scholar
  5. [5]
    D. R. LaFosse, D. G. Sarantites, C. Baktash, P. F. Hua, B. Cederwall, P. Fallon, C. J. Gross, H. Q. Jin, M. Korolija, I. Y. Lee, A. O. Macchiavelli, M. R. Maier, W. Rathbun, D. W. Stracener, and T. R. Werner, Phys. Rev. Lett. 74, 5186 (1995).ADSGoogle Scholar
  6. [6]
    A. Krasznahorkay, M. Hunyadi, M. N. Harakeh, M. Csatlós, T. Faestermann, A. Gollwitzer, G. Graw, J. Gulyás, D. Habs, R. Hertenberger, H. J. Maier, Z. Máté, D. Rudolph, P. Thirolf, J. Timár, and B. D. Valnion, Phys. Rev. Lett. 80, 2073 (1998).ADSGoogle Scholar
  7. [7]
    H. Morinaga, Phys. Rev. 101, 254 (1956).ADSGoogle Scholar
  8. [8]
    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kat, Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).ADSGoogle Scholar
  9. [9]
    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).ADSGoogle Scholar
  10. [10]
    T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki, Phys. Rev. Lett. 112, 062501 (2014), arXiv: 1310.7684.ADSGoogle Scholar
  11. [11]
    P. W. Zhao, N. Itagaki, and J. Meng, Phys. Rev. Lett. 115, 022501 (2015), arXiv: 1410.3986.ADSGoogle Scholar
  12. [12]
    N. Itagaki, S. Okabe, K. Ikeda, and I. Tanihata, Phys. Rev. C 64, 014301 (2001).ADSGoogle Scholar
  13. [13]
    M. Milin, and W. von Oertzen, Eur. Phys. J. A 14, 295 (2002).ADSGoogle Scholar
  14. [14]
    W. von Oertzen, H. G. Bohlen, M. Milin, T. Kokalova, S. Thummerer, A. Tumino, R. Kalpakchieva, T. N. Massey, Y. Eisermann, G. Graw, T. Faestermann, R. Hertenberger, and H. F. Wirth, Eur. Phys. J. A 21, 193 (2004).ADSGoogle Scholar
  15. [15]
    N. Itagaki, W. Oertzen, and S. Okabe, Phys. Rev. C 74, 067304 (2006).ADSGoogle Scholar
  16. [16]
    T. Suhara, and Y. Kanada-En’yo, Phys. Rev. C 82, 044301 (2010), arXiv: 1004.4954.ADSGoogle Scholar
  17. [17]
    N. Furutachi, and M. Kimura, Phys. Rev. C 83, 021303 (2011).ADSGoogle Scholar
  18. [18]
    M. Freer, J. D. Malcolm, N. L. Achouri, N. I. Ashwood, D. W. Bardayan, S. M. Brown, W. N. Catford, K. A. Chipps, J. Cizewski, N. Curtis, K. L. Jones, T. Munoz-Britton, S. D. Pain, N. Soíc, C. Wheldon, G. L. Wilson, and V. A. Ziman, Phys. Rev. C 90, 054324 (2014).ADSGoogle Scholar
  19. [19]
    T. Baba, Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319 (2014), arXiv: 1410.0789.ADSGoogle Scholar
  20. [20]
    W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014), arXiv: 1407.5414.ADSGoogle Scholar
  21. [21]
    L. Liu, and P. W. Zhao, Chin. Phys. C 36, 818 (2012).ADSGoogle Scholar
  22. [22]
    W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. C 94, 014301 (2016), arXiv: 1602.08955.ADSGoogle Scholar
  23. [23]
    A. Fritsch, S. Beceiro-Novo, D. Suzuki, W. Mittig, J. J. Kolata, T. Ahn, D. Bazin, F. D. Becchetti, B. Bucher, Z. Chajecki, X. Fang, M. Febbraro, A. M. Howard, Y. Kanada-En’yo, W. G. Lynch, A. J. Mitchell, M. Ojaruega, A. M. Rogers, A. Shore, T. Suhara, X. D. Tang, R. Torres-Isea, and H. Wang, Phys. Rev. C 93, 014321 (2016).ADSGoogle Scholar
  24. [24]
    J. Li, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, Z. Y. Tian, W. Jiang, Z. H. Yang, J. Feng, P. J. Li, J. Chen, Q. Liu, H. L. Zang, B. Yang, Y. Zhang, Z. Q. Chen, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Phys. Rev. C 95, 021303 (2017), arXiv: 1702.00617.ADSGoogle Scholar
  25. [25]
    H. Yamaguchi, D. Kahl, S. Hayakawa, Y. Sakaguchi, K. Abe, T. Nakao, T. Suhara, N. Iwasa, A. Kim, D. H. Kim, S. M. Cha, M. S. Kwag, J. H. Lee, E. J. Lee, K. Y. Chae, Y. Wakabayashi, N. Imai, N. Kitamura, P. Lee, J. Y. Moon, K. B. Lee, C. Akers, H. S. Jung, N. N. Duy, L. H. Khiem, and C. S. Lee, Phys. Lett. B 766, 11 (2017), arXiv: 1610.06296.ADSGoogle Scholar
  26. [26]
    T. Baba, and M. Kimura, Phys. Rev. C 95, 064318 (2017), arXiv: 1702.04874.ADSGoogle Scholar
  27. [27]
    P. Zhao, and Z. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).ADSGoogle Scholar
  28. [28]
    J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307 (2014).ADSGoogle Scholar
  29. [29]
    P. Chevallier, F. Scheibling, G. Goldring, I. Plesser, and M. W. Sachs, Phys. Rev. 160, 827 (1967).ADSGoogle Scholar
  30. [30]
    Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. 47, 1517 (1972).ADSGoogle Scholar
  31. [31]
    H. Flocard, P. H. Heenen, S. J. Krieger, and M. S. Weiss, Prog. Theor. Phys. 72, 1000 (1984).ADSGoogle Scholar
  32. [32]
    M. Bender, and P. H. Heenen, Nucl. Phys. A 713, 390 (2003).ADSGoogle Scholar
  33. [33]
    T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Phys. Rev. Lett. 107, 112501 (2011), arXiv: 1106.3443.ADSGoogle Scholar
  34. [34]
    A. H. Wuosmaa, R. R. Betts, B. B. Back, M. Freer, B. G. Glagola, T. Happ, D. J. Henderson, P. Wilt, and I. G. Bearden, Phys. Rev. Lett. 68, 1295 (1992).ADSGoogle Scholar
  35. [35]
    Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka, Phys. Rev. C 92, 011303 (2015), arXiv: 1409.8012.ADSGoogle Scholar
  36. [36]
    T. Neff, and H. Feldmeier, Nucl. Phys. A 738, 357 (2004).ADSGoogle Scholar
  37. [37]
    Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).ADSGoogle Scholar
  38. [38]
    W. von Oertzen, M. Freer, and Y. Kanadaenyo, Phys. Rep. 432, 43 (2006).ADSGoogle Scholar
  39. [39]
    M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U. G. Meißner, Rev. Mod. Phys. 90, 035004 (2018), arXiv: 1705.06192.ADSGoogle Scholar
  40. [40]
    A. S. Umar, J. A. Maruhn, N. Itagaki, and V. E. Oberacker, Phys. Rev. Lett. 104, 212503 (2010), arXiv: 1003.4711.ADSGoogle Scholar
  41. [41]
    J. A. Maruhn, N. Loebl, N. Itagaki, and M. Kimura, Nucl. Phys. A 833, 1 (2010).ADSGoogle Scholar
  42. [42]
    J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C 90, 054329 (2014), arXiv: 1406.2473.ADSGoogle Scholar
  43. [43]
    K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A 342, 111 (1980).ADSGoogle Scholar
  44. [44]
    P. G. Reinhard, and R. Y. Cusson, Nucl. Phys. A 378, 418 (1982).ADSGoogle Scholar
  45. [45]
    J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014), arXiv: 1310.5946.ADSGoogle Scholar
  46. [46]
    C. Yu, and L. Guo, Sci. China-Phys. Mech. Astron. 60, 092011 (2017).ADSGoogle Scholar
  47. [47]
    P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).ADSGoogle Scholar
  48. [48]
    D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).ADSGoogle Scholar
  49. [49]
    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).ADSGoogle Scholar
  50. [50]
    H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.ADSMathSciNetGoogle Scholar
  51. [51]
    A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).ADSGoogle Scholar
  52. [52]
    J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.Google Scholar
  53. [53]
    J. Meng, Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics Vol. 10 (World Scientific, Singapore, 2016).Google Scholar
  54. [54]
    H. J. Xia, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 60, 102021 (2017), arXiv: 1705.04904.ADSGoogle Scholar
  55. [55]
    J. Peng, J. Meng, P. Ring, and S. Q. Zhang, Phys. Rev. C 78, 024313 (2008).ADSGoogle Scholar
  56. [56]
    P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011), arXiv: 1101.4547.ADSGoogle Scholar
  57. [57]
    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.ADSGoogle Scholar
  58. [58]
    P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. C 85, 054310 (2012), arXiv: 1205.0867.ADSGoogle Scholar
  59. [59]
    J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C 73, 037303 (2006).ADSGoogle Scholar
  60. [60]
    J. Meng, and P. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.ADSGoogle Scholar
  61. [61]
    P. W. Zhao, Phys. Lett. B 773, 1 (2017), arXiv: 1706.06127.ADSGoogle Scholar
  62. [62]
    Y. Zhang, H. Liang, and J. Meng, Int. J. Mod. Phys. E 19, 55 (2010), arXiv: 0905.2505.ADSGoogle Scholar
  63. [63]
    B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.ADSGoogle Scholar
  64. [64]
    S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.ADSGoogle Scholar
  65. [65]
    K. G. Wilson, in New Phenomena in Subnuclear Physics, edited by A. Zichichi (Springer, Boston, 1977), pp. 69–142.Google Scholar
  66. [66]
    Y. Tanimura, K. Hagino, and H. Z. Liang, Prog. Theor. Exp. Phys. 2015, 073D01 (2015), arXiv: 1411.7804.Google Scholar
  67. [67]
    K. Hagino, and Y. Tanimura, Phys. Rev. C 82, 057301 (2010), arXiv: 1008.4995.ADSGoogle Scholar
  68. [68]
    R. N. Hill, and C. Krauthauser, Phys. Rev. Lett. 72, 2151 (1994).ADSGoogle Scholar
  69. [69]
    Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95, 024313 (2017), arXiv: 1612.09429.ADSGoogle Scholar
  70. [70]
    W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004).ADSGoogle Scholar
  71. [71]
    G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).ADSGoogle Scholar
  72. [72]
    T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C 65, 044308 (2002).ADSGoogle Scholar
  73. [73]
    T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008), arXiv: 0809.1375.ADSGoogle Scholar
  74. [74]
    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.ADSGoogle Scholar
  75. [75]
    W. Koepf, and P. Ring, Nucl. Phys. A 493, 61 (1989).ADSGoogle Scholar
  76. [76]
    W. Koepf, and P. Ring, Nucl. Phys. A 511, 279 (1990).ADSGoogle Scholar
  77. [77]
    J. König, and P. Ring, Phys. Rev. Lett. 71, 3079 (1993).ADSGoogle Scholar
  78. [78]
    H. Madokoro, J. Meng, M. Matsuzaki, and S. Yamaji, Phys. Rev. C 62, 061301 (2000).ADSGoogle Scholar
  79. [79]
    P. Ring, and P. Schuck, The Nuclear Many-Body Problem (Springer Science & Business Media, New York, 2004).Google Scholar
  80. [80]
    S. Frauendorf, and J. Meng, Z. Phys. A-Hadrons Nuclei 356, 263 (1996).ADSGoogle Scholar
  81. [81]
    S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).ADSGoogle Scholar
  82. [82]
    J. Shen, T. Tang, and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications (Springer, Dordrecht, 2011).zbMATHGoogle Scholar
  83. [83]
    Y. Y. Wang, and Z. X. Ren, Sci. China-Phys. Mech. Astron. 61, 082012 (2018), arXiv: 1711.07799.ADSMathSciNetGoogle Scholar
  84. [84]
    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).ADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • ZhengXue Ren
    • 1
  • ShuangQuan Zhang
    • 1
  • PengWei Zhao
    • 1
  • Naoyuki Itagaki
    • 2
  • Joachim A. Maruhn
    • 3
  • Jie Meng
    • 1
    • 2
    • 4
    Email author
  1. 1.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  3. 3.Institut für Theoretische PhysikGoethe-UniversitätFrankfurt am MainGermany
  4. 4.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations