Advertisement

The radiation structure of PSR B2016+28 observed with FAST

  • JiGuang LuEmail author
  • Bo PengEmail author
  • RenXin Xu
  • Meng Yu
  • Shi Dai
  • WeiWei Zhu
  • Ye-Zhao Yu
  • Peng Jiang
  • YouLing Yue
  • Lin Wang
  • FAST Collaboration
Article

Abstract

With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series (P3) is positively correlated to the separation between two adjacent sub-pulses (P2). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.

Keywords

radiation mechanisms mathematical procedures and computer techniques radio pulsars 

References

  1. 1.
    J. G. Lu, and R. X. Xu, JPS Conf. Proc. 20, 011026 (2018).Google Scholar
  2. 2.
    M. A. Ruderman, and P. G. Sutherland, Astrophys. J. 196, 51 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    J. Gil, G. I. Melikidze, and U. Geppert, Astron. Astrophys. 407, 315 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    R. X. Xu, G. J. Qiao, and B. Zhang, Astrophys. J. 522, L109 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    B. Peng, R. G. Strom, R. Nan, E. Ma, J. Ping, L. Zhu, and W. Zhu, in Science with FAST: Perspectives on Radio Astronomy: Science with Large Antenna Arrays, Proceedings of the Conference held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam on 7–9 April 1999, edited by M. P. van Haarlem (ASTRON, Amsterdam, 2000), p. 25.Google Scholar
  6. 6.
    B. Peng, R. Nan, and Y. Su, in Proposed world’s largest single dish: FAST: Proceedings Volume 4015, Radio Telescopes (SPIE, Munich, 2000).Google Scholar
  7. 7.
    D. R. Lorimer, J. A. Yates, A. G. Lyne, and D. M. Gould, Mon. Not. R. Astron. Soc. 273, 411 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    G. Hobbs, A. G. Lyne, M. Kramer, C. E. Martin, and C. Jordan, Mon. Not. R. Astron. Soc. 353, 1311 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    K. Stovall, P. S. Ray, J. Blythe, J. Dowell, T. Eftekhari, A. Garcia, T. J. W. Lazio, M. McCrackan, F. K. Schinzel, and G. B. Taylor, Astrophys. J. 808, 156 (2015), arXiv: 1410.7422.ADSCrossRefGoogle Scholar
  10. 10.
    L. Oster, D. A. Hilton, and W. Sieber, Astron. Astrophys. 57, 1 (1977).ADSGoogle Scholar
  11. 11.
    J. M. Rankin, Astrophys. J. 274, 333 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    P. Weltevrede, R. T. Edwards, and B. W. Stappers, Astron. Astrophys. 445, 243 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    F. D. Drake, and H. D. Craft, Nature 220, 231 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    J. H. Taylor, R. N. Manchester, and G. R. Huguenin, Astrophys. J. 195, 513 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    J. M. Rankin, Astrophys. J. 301, 901 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    P. Weltevrede, B. W. Stappers, and R. T. Edwards, Astron. Astrophys. 469, 607 (2007), arXiv: 0704.3572.ADSCrossRefGoogle Scholar
  17. 17.
    A. Naidu, B. C. Joshi, P. K. Manoharan, and M. A. KrishnaKumar, Astron. Astrophys. 604, A45 (2017), arXiv: 1704.05048.ADSCrossRefGoogle Scholar
  18. 18.
    P. Jiang, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, J. H. Sun, D. J. Yu, H. F. Liu, N. Y. Tang, L. Qian, J. G. Lu, J. Yan, B. Peng, S. X. Zhang, Q. M. Wang, Q. Li, D. Li, and FAST Collaboration, Sci. China-Phys. Mech. Astron. 62, 959502 (2019), arXiv: 1903.06324.CrossRefGoogle Scholar
  19. 19.
    A.W. Hotan, W. van Straten, and R. N. Manchester, Publ. Astron. Soc. Aust. 21, 302 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    R. T. Edwards, G. B. Hobbs, and R. N. Manchester, Mon. Not. R. Astron. Soc. 372, 1549 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    G. B. Hobbs, R. T. Edwards, and R. N. Manchester, Mon. Not. R. Astron. Soc. 369, 655 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    J. G. Lu, Y. J. Du, L. F. Hao, Z. Yan, Z. Y. Liu, K. J. Lee, G. J. Qiao, L. H. Shang, M. Wang, R. X. Xu, Y. L. Yue, and Q. J. Zhi, Astrophys. J. 816, 76 (2016), arXiv: 1511.08298.ADSCrossRefGoogle Scholar
  23. 23.
    A. G. Lyne, and R. N. Manchester, Mon. Not. R. Astron. Soc. 234, 477 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    W. Sieber, and L. Oster, Astron. Astrophys. 38, 325 (1975).ADSGoogle Scholar
  25. 25.
    A. G. J. van Leeuwen, M. L. A. Kouwenhoven, R. Ramachandran, J. M. Rankin, and B. W. Stappers, Astron. Astrophys. 387, 169 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    M. Serylak, B. Stappers, and P. Weltevrede, Am. Inst. Phys. Conf. Ser. 1357, 131 (2011).ADSGoogle Scholar
  27. 27.
    A. A. Deshpande, and J. M. Rankin, Mon. Not. R. Astron. Soc. 322, 438 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    R. Basu, D. Mitra, G. I. Melikidze, and A. Skrzypczak, Mon. Not. R. Astron. Soc. 482, 3757 (2019), arXiv: 1810.08423.ADSCrossRefGoogle Scholar
  29. 29.
    S. E. Thorsett, Astrophys. J. 377, 263 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    M. M. Komesaroff, D. Morris, and D. J. Cooke, Astrophys. Lett. 5, 37 (1970).ADSGoogle Scholar
  31. 31.
    D. B. Melrose, J. Astrophys. Astron. 16, 137 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    D. Mitra, M. Arjunwadkar, and J. M. Rankin, Astrophys. J. 806, 236 (2015), arXiv: 1502.06897.ADSCrossRefGoogle Scholar
  33. 33.
    K. S. Cheng, M. Ruderman, and L. Zhang, Astrophys. J. 537, 964 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    H. G. Wang, G. J. Qiao, R. X. Xu, and Y. Liu, Mon. Not. R. Astron. Soc. 366, 945 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    R. N. Manchester, Astrophys. J. 172, 43 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    K. J. Lee, X. H. Cui, H. G. Wang, G. J. Qiao, and R. X. Xu, Astrophys. J. 703, 507 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    R. Turolla, S. Zane, and J. J. Drake, Astrophys. J. 603, 265 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • JiGuang Lu
    • 1
    • 2
    Email author
  • Bo Peng
    • 1
    • 2
    Email author
  • RenXin Xu
    • 3
  • Meng Yu
    • 1
  • Shi Dai
    • 4
    • 1
  • WeiWei Zhu
    • 1
  • Ye-Zhao Yu
    • 1
    • 5
  • Peng Jiang
    • 1
  • YouLing Yue
    • 1
  • Lin Wang
    • 1
    • 5
  • FAST Collaboration
  1. 1.CAS Key Laboratory of FAST, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  2. 2.Guizhou Radio Astronomy ObservatoryChinese Academy of SciencesGuiyangChina
  3. 3.School of Physics and Kavli Institute for Astronomy and AstrophysicsPeking UniversityBeijingChina
  4. 4.CSIRO Astronomy and Space Science, Australia Telescope National FacilityEppingAustralia
  5. 5.College of Astronomy and Space SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations